第一

开发环境搭建

1. tensorflow的环境搭建

windows下安装cpu版tensorflow:

pip install tensorflow

在ubuntu上安装gpu版tensorflow:

a. 在硬件上装上英伟达独立显卡

例如:买来的nvidia geforce gtx 1070 公版显卡,发现显卡体积太大,机箱容纳不下显卡; 显卡要求最小功率为500W,台式机电源额定功率为250W;显卡上有SLI接口用于多个独显集成;

首先解决机箱问题,需要使用独立显卡外接排线,将显卡装在机箱外面,若500W电源只为显卡供电且没有接主板,则需要将电源上的主板连接口的绿线和任意黑线短接。

其次解决电源功率太小问题,买一个600W额定功率的大电源,同时使用250W的原装电源和600W的外加电源,250W的电源用于主板,硬盘,cpu的供电;600W电源用于独立显卡的供电

b. 更新显卡驱动

c. 安装gpu版tensorflow

注意:最好是使用virtualenv安装python环境,步骤如下:

首先,安装一个最基本的python环境,基本的python环境中已经安装了pip;如果没有安装pip,mac下可使用sudo easy_install pip来安装pip;

其次,安装virtualenv:例如下面的例子:

cd ~/Project

mkdir tensorflow_project

cd tensorflow_project

virtualenv --no-site-packages tensorflow_env

cd tensorflow_env

source ./bin/activate

最后,在该virtualenv环境下安装tensorflow:使用命令pip install tensorflow即可;

2. 第一个tensorflow程序(tensorflow基本写法)

# coding: UTF-8

import tensorflow as tf

# 定义常量
one = tf.constant(1)

# 定义变量
state = tf.Variable(0, name='result')

# 定义运算
temp = tf.add(state, one)

# 定义tensor的op操作
op_update = tf.assign(state, temp)
# op_init = tf.initialize_all_variables()
op_init = tf.global_variables_initializer()

# 运行
with tf.Session() as sess:
    sess.run(op_init)
    for i in range(10):
        sess.run(op_update)
        print(sess.run(state))

注意:

a. tensorflow程序中一般包括定义常量,变量,运算; 其次为tensor和op; 最后是在gpu中运行tensor

第二

基本概念与入门

1.基本概念

张量:

例如:tf.constant([1.0, 2.0], name="cons")

计算图:

graph1 = tf.Graph()

with graph1.as_default():

  a = tf.Variable(tf.random([2, 3], stddev=1, seed=1))

with tf.Session(graph=graph1) as sess:

  init_var = tf.initialize_all_variables()

  sess.run(init_var)

会话:

sess = tf.Session()

sess.run(init_var)

sess.close()

with tf.Session() as sess:

  sess.run(init_var)

  

sess= tf.InteractiveSession()

sess.run(init_var)

sess.close()

config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)

sess = tf.Session(config)

前向传播算法:

反向传播算法:

监督学习:

深度学习:

2.神经网络解决分类问题的基本步骤:

首先,提取特征向量作为神经网络的输入

其次,定义神经网络结构

再者,训练神经网络

最后,预测未知的数据

3. 使用前向传播算法的例子:

例如:

#!~/Project/tensorflow_project/tensorflow_env/bin/python
# coding=utf-8

import tensorflow as tf
import numpy as np

#1.提取特征值
x = tf.constant([[0.7, 0.9]])

#2.建立神经网络结构
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

#3.前向传播算法
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

#4.反向传播算法

init_var = tf.initialize_all_variables()

with tf.Session() as sess:
        sess.run(init_var)
        print sess.run(y)

4. 使用占位符实现多输入的例子:

例如:

#!~/Project/tensorflow_project/tensorflow_env/bin/python
# coding=utf-8

import tensorflow as tf
import numpy as np

#1.提取特征值
#x = tf.constant([[0.7, 0.9]])
x = tf.placeholder(tf.float32, name="x-input", shape=(3,2))

#2.建立神经网络结构
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

#3.前向传播算法
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

#4.反向传播算法

init_var = tf.initialize_all_variables()

with tf.Session() as sess:
        sess.run(init_var)
        print sess.run(y, feed_dict={x:[[0.7, 0.9], [0.1, 0.4], [0.5, 0.8]]})

5. 完整的训练神经网络的例子

注意:训练神经网路的三个步骤

首先,定义神经网络结构及使用前向传播算法输出结果

其次,定义损失函数及选择反向传播算法

最后,在会话上反复运行反向传播算法

例如:

#!~/Project/tensorflow_project/tensorflow_env/bin/python
# coding=utf-8

import tensorflow as tf
import numpy as np
from numpy.random import RandomState

#1.提取特征值
x = tf.placeholder(tf.float32, name="x-input", shape=(None,2))
y_ = tf.placeholder(tf.float32, name="y-input", shape=(None,1))

#2.建立神经网络结构
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))

#3.前向传播算法
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)

#定义测试数据
X = RandomState(1).rand(128, 2)
Y = [[int(x1+x2<1)] for (x1, x2) in X]

#定义损失函数
loss = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
train_step = tf.train.AdamOptimizer(0.00001).minimize(loss)

init_var = tf.initialize_all_variables()

with tf.Session() as sess:
        sess.run(init_var)
        print sess.run(w1)
        print sess.run(w2)

        #开始训练
        ALL_SIZE = 50000
        BATCH_SIZE = 10
        for i in range(ALL_SIZE):
                start = (i * BATCH_SIZE) % 128
                end = min(start + BATCH_SIZE, 128)

                sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
                total_loss = sess.run(loss, feed_dict={x: X, y_: Y})
                print "After", i, "times trainning, lossing rate is ", total_loss
        print(sess.run(w1))
        print(sess.run(w2))

第三

Mnist问题

1.下载数据集

下载地址为

http://yann.lecun.com/exdb/mnist/

下载后的文件分别为:

train-images-idx3-ubyte.gz

train-labels-idx1-ubyte.gz

t10k-images-idx3-ubyte.gz

t10k-labels-idx1-ubyte.gz

例如:编写代码下载mnist数据集,并检验数据集

#!/~/Project/tensorflow_project/tensorflow_env/bin/python
# coding = utf-8

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

print mnist.train.num_examples

print mnist.validation.num_examples

print mnist.test.num_examples

print mnist.train.images[0]

print mnist.train.labels[0]

batch_size = 100
xs, ys = mnist.train.next_batch(batch_size)

print xs.shape

print ys.shape

print xs

print ys

注意:

首先,使用input_data下载并读取数据集;

再者,打印数据集的各项信息来验证数据集;

《Tensorflow从入门到精通》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. P1184 高手之在一起(字典树模板题,hash算法, map)

    哎,唯一值得说明的是,这道题的输入有bug 先把字典树的算法模板放一下 #include<iostream> #include<cstring> using namespace ...

  2. 获得数值型数组的所有元素之和(分别使用增强for循环和普通for循环)

    package com.Summer_0419.cn; /** * @author Summer * 获得数值型数组的所有元素之和 */public class Test_Method13 { pub ...

  3. Tomcat的九个内置对象

    在之前学习过程中使用的对象大部分都是我们自己使用new关键字或者反射创建的,现在容器中会自动创建对象,我们只要直接使用即可,不需要我们再去创建这些对象,在Tomcat容器中提供了九种内置对象,有一些不 ...

  4. JS 格式化时间(获取两个日期之间的每一天、每一月、每半小时、每一秒)

    时间戳转换为时间 // 时间戳转换为时间 function timestampToTime(timestamp, isMs = true) { const date = new Date(timest ...

  5. Chrome 谷歌浏览器清除HTTPS证书缓存

    在地址栏输入 chrome://net-internals/#hsts 找到下图中的输入框,输入对于的域名执行删除就行了

  6. tornado设置cookie并加密

    最近看看tornado,遇到了sso的东西,了解下如何设置cookie 1.基本cookie set_cookie 方法在用户的浏览中设置 cookie: get_cookie 方法在用户的浏览中获取 ...

  7. Highchartsjs使用总结及实时动态刷新图

    柱状图: $('#container').highcharts({ //突显红色柱: series: [ 523, 345, 785, 565, 843,{'color': 'red','y': 30 ...

  8. c语言之sizeof的细节

    关于sizeof,我们知道sizeof并不是一个函数,尽管通常我们会用sizeof()用法(这是c语言的坑),在此关于sizeof的一些关键不被认知的进行一下总结: # include "i ...

  9. 关于always块内for循环的执行方式

    //该模块主要用来说明for结构在时序逻辑中的执行方式 :] eq_dly ); integer i; 'b1; always @(posedge clk_1 or negedge nrst) beg ...

  10. p68理想的性质

    1.如何由2.2.4推出后面的结论? 2.为什么A可以等于R? 3.如何证明3? π:R->R/M套用定理2.2.4(2)和(1) R2是R/M,I是R/M的理想也就是R2的理想,所以f^(-1 ...