1. 过拟合问题可以通过调整机器学习的参数来完成,比如sklearn中通过调节gamma参数,将训练损失和测试损失降到最低

2. 代码实现(显示gamma参数对训练损失和测试损失的影响)

from __future__ import print_function
from sklearn.learning_curve import  validation_curve
from sklearn.datasets import load_digits
from sklearn.svm import SVC
import matplotlib.pyplot as plt
import numpy as np

digits = load_digits()
X = digits.data
y = digits.target
param_range = np.logspace(-6, -2.3, 5)
train_loss, test_loss = validation_curve(
        SVC(), X, y, param_name='gamma', param_range=param_range, cv=10,
        scoring='mean_squared_error')
train_loss_mean = -np.mean(train_loss, axis=1)
test_loss_mean = -np.mean(test_loss, axis=1)

plt.plot(param_range, train_loss_mean, 'o-', color="r",
             label="Training")
plt.plot(param_range, test_loss_mean, 'o-', color="g",
             label="Cross-validation")

plt.xlabel("gamma")
plt.ylabel("Loss")
plt.legend(loc="best")
plt.show()

莫烦sklearn学习自修第九天【过拟合问题处理】的更多相关文章

  1. 莫烦theano学习自修第九天【过拟合问题与正规化】

    如下图所示(回归的过拟合问题):如果机器学习得到的回归为下图中的直线则是比较好的结果,但是如果进一步控制减少误差,导致机器学习到了下图中的曲线,则100%正确的学习了训练数据,看似较好,但是如果换成另 ...

  2. 莫烦sklearn学习自修第八天【过拟合问题】

    1. 什么是过拟合问题 所谓过拟合问题指的是使用训练样本进行训练时100%正确分类或规划,当使用测试样本时则不能正确分类和规划 2. 代码实战(模拟过拟合问题) from __future__ imp ...

  3. 莫烦sklearn学习自修第七天【交叉验证】

    1. 什么是交叉验证 所谓交叉验证指的是将样本分为两组,一组为训练样本,一组为测试样本:对于哪些数据分为训练样本,哪些数据分为测试样本,进行多次拆分,每次将整个样本进行不同的拆分,对这些不同的拆分每个 ...

  4. 莫烦scikit-learn学习自修第四天【内置训练数据集】

    1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linea ...

  5. 莫烦scikit-learn学习自修第六天【特征值矩阵标准化】

    1.代码实战 #!/usr/bin/env python #!_*_coding:UTF-8 _*_ import numpy as np from sklearn import preprocess ...

  6. 莫烦scikit-learn学习自修第五天【训练模型的属性】

    1.代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ from sklearn import datasets from sklearn.linear ...

  7. 莫烦scikit-learn学习自修第三天【通用训练模型】

    1. 代码实战 #!/usr/bin/env python #!_*_ coding:UTF-8 _*_ import numpy as np from sklearn import datasets ...

  8. 莫烦scikit-learn学习自修第一天【scikit-learn安装】

    1. 机器学习的分类 (1)有监督学习(包括分类和回归) (2)无监督学习(包括聚类) (3)强化学习 2. 安装 (1)安装python (2)安装numpy >=1.6.1 (3)安装sci ...

  9. 莫烦scikit-learn学习自修第二天【算法地图】

    1. 算法地图

随机推荐

  1. OpenCV3计算机视觉Python语言实现笔记(三)

    一.使用OpenCV处理图像 1.不同颜色空间的转换 OpenCV中有数百种关于在不同色彩空间之间转换的方法.当前,在计算机视觉中有三种常用的色彩空间:灰度.BGR以及HSV(Hue, Saturat ...

  2. Scarpy 起始url 自定义代理 自定义去重规则

    - start_urls - 内部原理 """ scrapy引擎来爬虫中去起始的URL: 1. 调用start_requests并获取返回值 2. v = iter(返回 ...

  3. Java多线程(八)——join()

    一.join()介绍 join() 定义在Thread.java中.join() 的作用:让“主线程”等待“子线程”结束之后才能继续运行.这句话可能有点晦涩,我们还是通过例子去理解: // 主线程 p ...

  4. 2-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案数据篇(数据库简单说明)

    1-STM32物联网开发WIFI(ESP8266)+GPRS(Air202)系统方案数据篇(视频总揽) 这里有个教程   http://www.cnblogs.com/best/p/6517755.h ...

  5. Ubuntu18.04安装英伟达显卡驱动

    前几天买了一张RTX2060显卡,想自学一下人工智能,跑一些图形计算,安装Ubuntu18.04后发现英伟达显卡驱动安装还是有点小麻烦,所以这里记录一下安装过程,以供参考: 1.卸载系统里低版本的英伟 ...

  6. CF741 D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    题目意思很清楚了吧,那么我们从重排回文串的性质入手. 很容易得出,只要所有字符出现的次数都为偶数,或者有且只有一个字符出现为奇数就满足要求了. 然后想到什么,Hash?大可不必,可以发现字符\(\in ...

  7. centos7 关闭selinux

    关闭SeLinux 临时关闭:setenforce 0 永久关闭:vi /etc/selinux/config

  8. UVA - 12169 -扩展欧几里得算法

    #include<iostream> #include<string.h> #include<algorithm> #include<stdio.h> ...

  9. 小程序wxRequest封装

    //const host = 'http://114.215.00.00:8005';// 测试地址 const host = 'https://xx.xxxxxxxx.net'; // 正式地址 c ...

  10. 用python实现一个回文数

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数. 示例 1: 输入: 121 输出: true 示例 2: 输入: -121 输出: false 解释: 从左向 ...