A. 三角形面积

#include <bits/stdc++.h>

using namespace std;

int main()
{
double a,b,c;
double ans,p,tmp;
cin>>a>>b>>c;
p=(a+b+c)*0.5;
tmp=p*(p-a)*(p-b)*(p-c);
ans=sqrt(tmp);
printf("%.1lf", ans);
return 0;
}

B. 最大质因子

唯一分解定理

唯一分解定理又称为算数基本定理,基本内容是:

每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。

用另一种方法表示就是:

对于任何一个大于1的正整数,都存在一个标准的分解式: N=p1^a1 * p2a2*···*pnan;(其中一系列an为指数,pn为质数)

此定理表明:任何一个大于 1 的正整数都可以表示为素数的积。

然而这道题纯暴力就可解...

#include <bits/stdc++.h>

using namespace std;

const int maxn=1e5+10;

bool judge(int a)
{
int flag=1;
for (int i=2;i*2<=a;i++)
if (a%i==0) {flag=0; break; }
if (a==1) return 0;
else return flag;
} int main()
{
int a;
while(cin>>a)
{
for (int i=a;i>=1;i--)
{
if (a%i==0)
if (judge(i)) {
cout<<i<<endl;
break;
}
}
} return 0; }

C.杨辉三角

模板例题

#include<bits/stdc++.h>

using namespace std;

int a[21][21];

int main()
{
memset(a, 0, sizeof(a));
a[1][1]=1;
a[2][1]=a[2][2]=1;
int n;
cin>>n;
for(int i=3;i<=n;i++)//行
{
for(int j=1;j<=i;j++)
{
if(j==1 || j==i)
{
a[i][j]=1;continue;
}
a[i][j]=a[i-1][j-1]+a[i-1][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}

D."nefu"的数目

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; string s; int scount(int p)
{
int sum=0;
int len=s.length();
for(int i=p+1;i<len;i++)
{
if(s[i]=='e')
{
for(int j=i+1;j<len;j++)
{
if(s[j]=='f')
{
for(int k=j+1;k<len;k++)
{
if(s[k]=='u') sum++;
//cout<<sum<<endl;
}
}
}
}
}
return sum;
} int main()
{
int ans=0,flag=0;
cin>>s;
int len=s.length();
//cout<<len;
for(int i=0;i<len;i++)
{
if(s[i]=='n')
{
ans+=scount(i);
}
//cout<<ans<<endl;
}
cout<<ans<<endl;
return 0;
}

E. 最少修改次数(1)

#include <bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;

int main()
{
string s,t;
while(cin>>s)
{
cin>>t;
int ct=0;
int nums=s.size(),numt=t.size();
int min=1111;
for (int i=0;i<=nums-numt;i++)
{
int j=0;
ct=0;
for (int k=i;k<=i+numt-1;k++)
{
if (s[k]!=t[j]) ct++;
j++;
} if (ct<min) min=ct;
} cout<<min<<endl;
}
return 0;
}

F.字典序

#include <bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;

int main()
{
int n;
while(cin>>n)
{
string s1,s,max="0";
for (int i=1;i<=n;i++)
{
int m=i;
s.clear(); s1.clear();
while(m!=0)
{
s+=m%8+'0';
m/=8;
}
for (int j=s.size()-1;j>=0;j--)
{
s1+=s[j];
}
if (s1>max) max=s1;
}
cout<<max<<endl;
}
return 0;
}

G.最小差值

#include<bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;
int a[maxn]; int main()
{
int n,tot=0;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
tot+=a[i];
}
long long sum=0,ans=999999;
for(int i=0;i<n;i++)
{
long long com;
sum+=a[i];
com=tot-sum;
ans=min(ans, abs(com-sum));
}
cout<<ans;
return 0;
}

H.染色方案(待补)

I.最大正方形

#include<iostream>

#include<algorithm>

using namespace std;

int main()
{
int a[1000+5];
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1, a+1+n);
int ans=0;
for(int i=n;i>=1;i--)
{
if(a[i]>=ans+1)
{
ans++;
}
else break;
}
cout<<ans;
return 0;
}

J.最大值

注意:此题用C++输入输出会超时

#include<iostream>
#include<cstdio> using namespace std; const int MAXN=2e5+10;
int a[MAXN];
int times=0; int main()
{
int n;
while(cin>>n)
{
int maxn=0,next=0;
for(int i=0;i<n;i++)
{
scanf("%d", &a[i]);
maxn=max(maxn, a[i]);
}
for(int i=0;i<n;i++)
{
if(a[i]==maxn)
{
times++;
continue;
}
next=max(next, a[i]);
}
for(int i=0;i<n;i++)
{
if(a[i]>=maxn && times<=1)
{
printf("%d\n", next);
}
else
{
printf("%d\n", maxn);
}
}
}
return 0;
}

K.循环排列(待补)

L.库特与围棋(待补)

ACM-NEFU15届校赛-大一组的更多相关文章

  1. 河南省acm第九届省赛--《表达式求值》--栈和后缀表达式的变形--手速题

    表达式求值 时间限制:1000 ms | 内存限制:65535 KB 难度:3   描述 假设表达式定义为:1. 一个十进制的正整数 X 是一个表达式.2. 如果 X 和 Y 是 表达式,则 X+Y, ...

  2. CSUST 第15届 校赛总结

    一直想记录一下自己的比赛,却感觉空间说说有点不适,思考了一番还是打算放到自己的博客园 这次比赛总体来说还是不错,签到还是稳的一批,基本前四小时都在rk1 开局切了几道签到题,然后开了一道思维gcd,正 ...

  3. 广工十四届校赛 count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...

  4. Sdut 2165 Crack Mathmen(数论)(山东省ACM第二届省赛E 题)

    Crack Mathmen TimeLimit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Since mathmen take security ...

  5. ACM Sdut 2158 Hello World!(数学题,排序) (山东省ACM第一届省赛C题)

    题目描述 We know thatIvan gives Saya three problems to solve (Problem F), and this is the firstproblem. ...

  6. 之江学院第0届校赛 qwb去面试 (找规律)

    Description 某一天,qwb去WCfun面试,面试官问了他一个问题:把一个正整数n拆分成若干个正整数的和,请求出这些数乘积的最大值. qwb比较猥琐,借故上厕所偷偷上网求助,聪明的你能帮助他 ...

  7. 之江学院第0届校赛 qwb与支教 (容斥公式)

    description qwb同时也是是之江学院的志愿者,暑期要前往周边地区支教,为了提高小学生的数学水平.她把小学生排成一排,从左至右从1开始依次往上报数. 玩完一轮后,他发现这个游戏太简单了.于是 ...

  8. Sdut 2164 Binomial Coeffcients (组合数学) (山东省ACM第二届省赛 D 题)

    Binomial Coeffcients TimeLimit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 输入 输出 示例输入 1 1 10 2 9 ...

  9. Sdut 2151 Phone Numbers (山东省ACM第一届省赛题 A)

    题目描述 We know thatif a phone number A is another phone number B's prefix, B is not able to becalled. ...

  10. 福州大学第十届校赛 & fzu 2128最长子串

    思路: 对于每个子串,求出 母串中 所有该子串 的 开始和结束位置,保存在 mark数组中,求完所有子串后,对mark数组按 结束位置排序,然后 用后一个的结束位置 减去 前一个的 开始 位置 再 减 ...

随机推荐

  1. Mixly智能门禁(物联网)

    智能门禁arduino rc522读卡器  sg90舵机 校园卡我的校园卡号识别为 30fcb4a8d #include <RFID.h>#include <SPI.h>#in ...

  2. 通用CSS命名惯例

    通用的 CSS 命名惯例 在参与规模庞大.历时漫长.且参与人数众多的项目时,要确保每一行代码都像是同一个人编写的:这就要求所有开发者,都遵守相同的代码规范.在先前的文章前端项目开发规范意见,从宏观角度 ...

  3. jetbrain 全套激活

    关于 jetbrain 专业版激活的教程很多,发现很多实际操作不太友好,本人亲测可激活经理 1.下载 ja-ja-netfilter-all https://github.com/byebai95/j ...

  4. 将Vue项目部署到Nginx中,出现的400,405,200响应空等问题处理

    最近用Vue3写了个项目,然后对接后台接口. 在本地vue配置文件中,配置了反向代理.成功请求了后端接口. 自测没有问题. 打包vue,发布到nginx中.运行nginx,成功显示了页面. 当点击页面 ...

  5. 用python提取txt文件中的特定信息并写入Excel

    这个是用 excel里面的 去掉空格最后导出的一个list: 原本是有空格的 后面是抵消了中间的空格. 然后 这里侧重说一下什么是split()函数 语法:str.split(str="&q ...

  6. PLC入门笔记7

    梯形图与指令表的转换 后缀表达式 开头是MPS 结尾是MPP 中间就是MRD啦!!!! MPS 存入堆栈(将目前累加器的内容存入堆栈.(堆栈指针加一))将当前数据栈顶数据复制一份到辅助栈 栈深度+1 ...

  7. curl post请求body体内传参数

    1. 传参格式 json function post_http($array='',$url) { $ch = curl_init(); $header = array('Content-Type: ...

  8. 二维Svg转矢量 不支持Svg2.0

    import { ElMessage } from 'element-plus' import { parse } from 'svgson' import JsonToView from './vi ...

  9. github使用流程

    前期硬件准备工作(电脑相关配置): 1.下载git软件,傻瓜式安装 https://git-scm.com/download/win 2.设置你的用户名称与邮件地址 git config --glob ...

  10. applicationContext使用注解代替

    创建一个类SpringConfig @Configuration//证明这个类是spring的配置文件类 @ComponentScan("com.itheima")//扫描的哪些包 ...