10 绘图实例(2) Drawing example(2)

(代码下载)
本文主要讲述seaborn官网相关函数绘图实例。具体内容有:

  1. Grouped violinplots with split violins(violinplot)
  2. Annotated heatmaps(heatmap)
  3. Hexbin plot with marginal distributions(jointplot)
  4. Horizontal bar plots(barplot)
  5. Horizontal boxplot with observations(boxplot)
  6. Conditional means with observations(stripplot)
  7. Joint kernel density estimate(jointplot)
  8. Overlapping densities(ridge plot)
  9. Faceted logistic regression(lmplot)
  10. Plotting on a large number of facets(FacetGrid)
# import packages
# from IPython.core.interactiveshell import InteractiveShell
# InteractiveShell.ast_node_interactivity = "all"
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

1. Grouped violinplots with split violins(violinplot)

sns.set(style="whitegrid", palette="pastel", color_codes=True)
# Load the example tips dataset
tips = sns.load_dataset("tips") # Draw a nested violinplot and split the violins for easier comparison 画分组的小提琴图 sns.violinplot(x="day", y="total_bill", hue="smoker",
# split表示当两种类别嵌套时分别用不同颜色表示
# inner表示小提琴内部的数据点表示形式
split=True, inner="quart",
# 设定hue对应类别的颜色
palette={"Yes": "y", "No": "b"},
data=tips)
sns.despine(left=True)

2. Annotated heatmaps(heatmap)

# Load the example flights dataset and conver to long-form
flights_long = sns.load_dataset("flights")
# 转成透视表后
flights = flights_long.pivot("month", "year", "passengers")
# Draw a heatmap with the numeric values in each cell
f, ax = plt.subplots(figsize=(9, 6))
# annot表示每个方格内写入数据,fmt注释的形式,linewidth行宽度
sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax);

3. Hexbin plot with marginal distributions(jointplot)

rs = np.random.RandomState(11)
x = rs.gamma(2, size=1000)
y = -.5 * x + rs.normal(size=1000)
# 边界核密度估计图 kind选择类型
sns.jointplot(x, y, kind="hex", color="#4CB391");

4. Horizontal bar plots(barplot)

sns.set(style="whitegrid")

# Initialize the matplotlib figure 设置图像大小
f, ax = plt.subplots(figsize=(6, 15)) # Load the example car crash dataset 获得数据集
crashes = sns.load_dataset("car_crashes").sort_values("total", ascending=False) # Plot the total crashes 设置后续颜色色调
sns.set_color_codes("pastel")
sns.barplot(x="total", y="abbrev", data=crashes,
label="Total", color="b") # Plot the crashes where alcohol was involved
# 通过不同色调显示颜色
sns.set_color_codes("muted")
sns.barplot(x="alcohol", y="abbrev", data=crashes,
label="Alcohol-involved", color="b") # Add a legend and informative axis label
# 设置图例,frameon设置图例边框
ax.legend(ncol=2, loc="lower right", frameon=True)
ax.set(xlim=(0, 24), ylabel="",
xlabel="Automobile collisions per billion miles")
sns.despine(left=True, bottom=True)

5. Horizontal boxplot with observations(boxplot)

sns.set(style="ticks")

# Initialize the figure with a logarithmic x axis
f, ax = plt.subplots(figsize=(7, 6))
# 设置x轴为log标尺
ax.set_xscale("log") # Load the example planets dataset
planets = sns.load_dataset("planets") # Plot the orbital period with horizontal boxes 画图
# whis设定异常值解决方法,range为延长上下边缘线条
sns.boxplot(x="distance", y="method", data=planets,
whis="range", palette="vlag") # Add in points to show each observation
# swarm添加散点
sns.swarmplot(x="distance", y="method", data=planets,
size=2, color=".3", linewidth=0) # Tweak the visual presentation
ax.xaxis.grid(True)
ax.set(ylabel="")
sns.despine(trim=True, left=True)

6. Conditional means with observations(stripplot)

sns.set(style="whitegrid")
iris = sns.load_dataset("iris") # "Melt" the dataset to "long-form" or "tidy" representation 提取species对应数据,以measurement命名
iris = pd.melt(iris, "species", var_name="measurement") # Initialize the figure
f, ax = plt.subplots()
sns.despine(bottom=True, left=True) # Show each observation with a scatterplot
# 绘制分布散点图
sns.stripplot(x="value", y="measurement", hue="species",
# dodge,jitter调整各点间距,防止重合
data=iris, dodge=True, jitter=True,
alpha=.25, zorder=1) # Show the conditional means
# 绘制点图
sns.pointplot(x="value", y="measurement", hue="species",
data=iris, dodge=.532, join=False, palette="dark",
markers="d", scale=.75, ci=None) # Improve the legend 自动获取图例
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[3:], labels[3:], title="species",
handletextpad=0, columnspacing=1,
loc="lower right", ncol=3, frameon=True);

7. Joint kernel density estimate(jointplot)

sns.set(style="white")

# Generate a random correlated bivariate dataset
rs = np.random.RandomState(5)
mean = [0, 0]
cov = [(1, .5), (.5, 1)]
x1, x2 = rs.multivariate_normal(mean, cov, 500).T
x1 = pd.Series(x1, name="$X_1$")
x2 = pd.Series(x2, name="$X_2$") # Show the joint distribution using kernel density estimation 画出联合分布图
# space表示侧边图和中央图距离
g = sns.jointplot(x1, x2, kind="kde", height=7, space=0)

8. Overlapping densities(ridge plot)

sns.set(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})

# Create the data 创建数据
rs = np.random.RandomState(1979)
x = rs.randn(500)
g = np.tile(list("ABCDEFGHIJ"), 50)
df = pd.DataFrame(dict(x=x, g=g))
m = df.g.map(ord)
df["x"] += m # Initialize the FacetGrid object
# 创建顺序调色板
pal = sns.cubehelix_palette(10, rot=-.25, light=.7)
# row,col定义数据子集的变量,这些变量将在网格的不同方面绘制
# aspect纵横比
# height 每个图片的高度设定
g = sns.FacetGrid(df, row="g", hue="g", aspect=15, height=.5, palette=pal) # Draw the densities in a few steps
# 画出核密度图
g.map(sns.kdeplot, "x", clip_on=False, shade=True, alpha=1, lw=1.5, bw=.2)
g.map(sns.kdeplot, "x", clip_on=False, color="w", lw=2, bw=.2) # 画出水平参考线
g.map(plt.axhline, y=0, lw=2, clip_on=False) # Define and use a simple function to label the plot in axes coordinates
def label(x, color, label):
ax = plt.gca()
ax.text(0, .2, label, fontweight="bold", color=color,
ha="left", va="center", transform=ax.transAxes) g.map(label, "x") # Set the subplots to overlap
g.fig.subplots_adjust(hspace=-.25) # Remove axes details that don't play well with overlap 移除边框
g.set_titles("")
g.set(yticks=[])
g.despine(bottom=True, left=True)

9. Faceted logistic regression(lmplot)

# Load the example titanic dataset
df = sns.load_dataset("titanic") # Make a custom palette with gendered colors 设置颜色
pal = dict(male="#6495ED", female="#F08080") # Show the survival proability as a function of age and sex
# logistic设定画出逻辑回归模型
g = sns.lmplot(x="age", y="survived", col="sex", hue="sex", data=df,
palette=pal, y_jitter=.02, logistic=True);
g.set(xlim=(0, 80), ylim=(-.05, 1.05))

10. Plotting on a large number of facets(FacetGrid)

sns.set(style="ticks")

# Create a dataset with many short random walks 创建数据集
rs = np.random.RandomState(4)
pos = rs.randint(-1, 2, (20, 5)).cumsum(axis=1)
pos -= pos[:, 0, np.newaxis]
step = np.tile(range(5), 20)
walk = np.repeat(range(20), 5)
df = pd.DataFrame(np.c_[pos.flat, step, walk],
columns=["position", "step", "walk"]) # Initialize a grid of plots with an Axes for each walk 初始化绘图坐标窗口
# col_wrap每一行四张图,col以walk进行分类
grid = sns.FacetGrid(df, col="walk", hue="walk", palette="tab20c",
col_wrap=4, height=1.5) # Draw a horizontal line to show the starting point 画出线条图
grid.map(plt.axhline, y=0, ls=":", c=".5") # Draw a line plot to show the trajectory of each random walk 画图点图
grid.map(plt.plot, "step", "position", marker="o") # Adjust the tick positions and labels 设定x,y坐标范围
grid.set(xticks=np.arange(5), yticks=[-3, 3],
xlim=(-.5, 4.5), ylim=(-3.5, 3.5)) # Adjust the arrangement of the plots
grid.fig.tight_layout(w_pad=1)

[seaborn] seaborn学习笔记10-绘图实例(2) Drawing example(2)的更多相关文章

  1. [seaborn] seaborn学习笔记11-绘图实例(3) Drawing example(3)

    11 绘图实例(3) Drawing example(3)(代码下载) 本文主要讲述seaborn官网相关函数绘图实例.具体内容有: Plotting a diagonal correlation m ...

  2. [seaborn] seaborn学习笔记12-绘图实例(4) Drawing example(4)

    文章目录 12 绘图实例(4) Drawing example(4) 1. Scatterplot with varying point sizes and hues(relplot) 2. Scat ...

  3. [seaborn] seaborn学习笔记9-绘图实例(1) Drawing example(1)

    文章目录 9 绘图实例(1) Drawing example(1) 1. Anscombe's quartet(lmplot) 2. Color palette choices(barplot) 3. ...

  4. Android:日常学习笔记(10)———使用LitePal操作数据库

    Android:日常学习笔记(10)———使用LitePal操作数据库 引入LitePal 什么是LitePal LitePal是一款开源的Android数据库框架,采用了对象关系映射(ORM)的模式 ...

  5. 并发编程学习笔记(10)----并发工具类CyclicBarrier、Semaphore和Exchanger类的使用和原理

    在jdk中,为并发编程提供了CyclicBarrier(栅栏),CountDownLatch(闭锁),Semaphore(信号量),Exchanger(数据交换)等工具类,我们在前面的学习中已经学习并 ...

  6. thinkphp学习笔记10—看不懂的路由规则

    原文:thinkphp学习笔记10-看不懂的路由规则 路由这部分貌似在实际工作中没有怎么设计过,只是在用默认的设置,在手册里面看到部分,艰涩难懂. 1.路由定义 要使用路由功能需要支持PATH_INF ...

  7. 《C++ Primer Plus》学习笔记10

    <C++ Primer Plus>学习笔记10 <<<<<<<<<<<<<<<<<&l ...

  8. SQL反模式学习笔记10 取整错误

    目标:使用小数取代整数 反模式:使用Float类型 根据IEEE754标识,float类型使用二进制格式编码实数数据. 缺点:(1)舍入的必要性: 并不是所有的十进制中描述的信息都能使用二进制存储,处 ...

  9. golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息

    golang学习笔记10 beego api 用jwt验证auth2 token 获取解码信息 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放 ...

随机推荐

  1. CentOS 7.9 安装 ELK

    一.CentOS 7.9 安装 elasticsearch-7.8.1 地址 https://www.elastic.co https://www.elastic.co/cn/downloads/pa ...

  2. 编写HelloWorld并运行

    1在任意地方右键点新建 2创建一个文本文档 3修改名字,改为HelloWorld.java 4打开文件扩展名,查看后缀 打开后再去看文件名后缀有没有.txt,如果有的话就不是java文件,把后缀的.t ...

  3. WindivertDotnet快速发Ping

    1 前言 WindivertDotnet是面向对象的WinDivert的dotnet异步封装,其提供如下的发送数据方法: ValueTask<int> SendAsync( WinDive ...

  4. 【题解】CF1720C

    题意简述 给你一个 01 矩阵,每一次你可以在这个矩阵中找到一个 \(L\) 型,将它全部变成 0.\(L\) 型的定义是在一个 \(2\times2\) 矩阵中,除开一个角之外的图形,其中必须包含至 ...

  5. LcdToos如何在线对屏进行读写指令调试

    在实际屏调试过程中,工程师经常需要对屏的寄存器频繁进行参数修改和读取测试,LcdTools针对这个做了很好的支持,可以在线进行指令调试,大大提高调试效率. 打开点屏工程,连接PX01并使模组上电点亮. ...

  6. 7. url反向解析和静态文件

    一.代码中url出现的位置 1.模版[html]中 1.<a href='urk'>超链接点击跳转<a/> 2.<form action='url' method='po ...

  7. SQL--存储过程的使用

    存储过程的概念 存储过程类似一个函数,可以执行一条或者多条SQL语句,可带参数,可返回值 为了简化操作,方便更改和扩展,将一个事件的处理封装在一个单元中供使用. 创建存储过程 --创建存储过程(不带参 ...

  8. 云原生之旅 - 5)Kubernetes时代的包管理工具 Helm

    前言 上一篇文章 [基础设施即代码 使用 Terraform 创建 Kubernetes] 教会了你如何在Cloud上面建Kubernetes资源,那么本篇来讲一下如何在Kubernetes上面部署应 ...

  9. Java:既然有了synchronized,为什么还要提供Lock?

    摘要:在Java中提供了synchronized关键字来保证只有一个线程能够访问同步代码块.既然已经提供了synchronized关键字,那为何在Java的SDK包中,还会提供Lock接口呢?这是不是 ...

  10. Element基本组件

    Element按钮组件: <el-row> <el-button>默认按钮</el-button> <el-button type="primary ...