pytorch学习笔记一之张量
1. 张量¶
1.1. 概述¶
张量(tensor)是pytorch中的一种较为基础的数据结构,类比于numpy中的ndarrays,在pytorch中,张量可以在GPU中进行运算
通过以下命令,我们导入pytorch和numpy:
import torch
import numpy as np
1.2. 张量初始化¶
1.2.1. 直接生成张量¶
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
x_data
tensor([[1, 2],
[3, 4]])
1.2.2. ndarrays转化¶
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
x_np
tensor([[1, 2],
[3, 4]])
1.2.3. 通过已有张量生成¶
继承结构与数据类型:
x_ones = torch.ones_like(x_data)
x_ones
tensor([[1, 1],
[1, 1]])
继承结构,改变数据类型:
x_rand = torch.rand_like(x_data, dtype=torch.float)
x_rand
tensor([[0.9849, 0.3644],
[0.0800, 0.2939]])
1.2.4. 指定维数生成张量¶
用元组类型的数据指定维数:
shape = (2, 3)
生成张量:
torch.ones(shape)
tensor([[1., 1., 1.],
[1., 1., 1.]])
torch.zeros(shape)
tensor([[0., 0., 0.],
[0., 0., 0.]])
torch.rand(shape)
tensor([[0.1744, 0.3771, 0.7969],
[0.7098, 0.9853, 0.3950]])
1.3. 张量属性¶
维数:
x_data.shape
torch.Size([2, 2])
数据类型:
x_data.dtype
torch.int64
存储设备:
x_data.device
device(type='cpu')
1.4. 张量计算¶
GPU对于张量的计算更快,检测GPU是否可用:
torch.cuda.is_available()
False
显然,对于笔者设备来说,由于没有显卡,GPU加速是不可用的,如果设备GPU可用,可以将CPU中的数据导入GPU:
if torch.cuda.is_available():
tensor = x_data.to('cuda')
1.4.1. 索引和切片¶
tensor = torch.ones((3, 4))
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
类比于ndarrays,tensor也可理解为是一个多维数组,以下表示将tensor变量的第一行、第一列变为0:
tensor[1, 1] = 0
tensor
tensor([[1., 1., 1., 1.],
[1., 0., 1., 1.],
[1., 1., 1., 1.]])
以下表示将tensor变量的第三列变为0:
tensor[:, 3] = 0
tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
1.4.2. 张量的拼接¶
tensor1 = torch.ones((3, 4))
tensor2 = torch.zeros((3, 4))
使用torch.cat()方法,指定维数进行拼接:
torch.cat([tensor1, tensor2], dim=1)
tensor([[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=0)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=-1)
tensor([[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=-2)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
torch.cat([tensor1, tensor2, tensor], dim=-2)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
此处实验 dim = 2 时,有:
torch.cat([tensor1, tensor2], dim=2)
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-31-dc57fe12e880> in <module>
----> 1 torch.cat([tensor1, tensor2], dim=2)
IndexError: Dimension out of range (expected to be in range of [-2, 1], but got 2)
根据官网示例,此处dim的取值主要是0和1:
x = torch.randn(2, 3)
torch.cat((x, x, x), 0)
torch.cat((x, x, x), 1)
综上,dim的取值有 -2、-1、0、1,然而-2、-1与0、1的意思似乎是一样的
1.4.3. 张量的乘积与矩阵乘法¶
逐个元素相乘:
tensor.mul(tensor)
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
等价于:
tensor * tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
张量与张量的矩阵乘法:
tensor.matmul(tensor.T)
tensor([[3., 2., 3.],
[2., 2., 2.],
[3., 2., 3.]])
等价于:
tensor @ tensor.T
tensor([[3., 2., 3.],
[2., 2., 2.],
[3., 2., 3.]])
1.4.4. 自动赋值运算¶
自增运算:
tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
tensor.add_(5)
tensor([[6., 6., 6., 5.],
[6., 5., 6., 5.],
[6., 6., 6., 5.]])
tensor
tensor([[6., 6., 6., 5.],
[6., 5., 6., 5.],
[6., 6., 6., 5.]])
复制运算:
tensor.copy_(tensor1)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
注意:自动赋值运算可以节省内存,但是会导致一些中间过程的问题
1.5. Tensor与Numpy的转换¶
1.5.1. Tensor转换为Numpy¶
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
np_t = tensor.numpy()
np_t
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], dtype=float32)
tensor.add_(5)
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
np_t
array([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]], dtype=float32)
可见:Tensor和Numpy共用内存,一个改变时另一个也改变
1.5.2. Numpy转Tensor¶
np_t
array([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]], dtype=float32)
tensor
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
t_np = torch.from_numpy(np_t)
t_np
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
np.add(np_t, 1, out=np_t)
array([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]], dtype=float32)
t_np
tensor([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]])
np.add(np_t, 1)
array([[8., 8., 8., 8.],
[8., 8., 8., 8.],
[8., 8., 8., 8.]], dtype=float32)
t_np
tensor([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]])
可见:np.add()指定out=时才会重新赋值
1.6. 参考资料:¶
pytorch学习笔记一之张量的更多相关文章
- [PyTorch 学习笔记] 1.3 张量操作与线性回归
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼 ...
- [PyTorch 学习笔记] 1.2 Tensor(张量)介绍
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https: ...
- Pytorch学习笔记(二)---- 神经网络搭建
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...
- Pytorch学习笔记(一)---- 基础语法
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...
- 【pytorch】pytorch学习笔记(一)
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...
- [PyTorch 学习笔记] 1.4 计算图与动态图机制
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深 ...
- [PyTorch 学习笔记] 2.2 图片预处理 transforms 模块机制
PyTorch 的数据增强 我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包.有 3 个主要的模块: torchvision.transforms: 里面包括常用的 ...
- [PyTorch 学习笔记] 4.3 优化器
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...
- 【深度学习】Pytorch 学习笔记
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...
- Pytorch学习笔记(二)——Tensor
一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.s ...
随机推荐
- Android ViewPager2 + TabLayout + BottomNavigationView
Android ViewPager2 + TabLayout + BottomNavigationView 实际案例 本篇主要介绍一下 ViewPager2 + TabLayout + BottomN ...
- pandas中groupby的使用
一.缘由 在爬取大量的数据之后,需要对数据进行分组的处理,于是就使用了groupby,但是我需要的并不是分组之后数据的聚合分析,我需要的是原生的某些数据.但是却找不到网上的相关案例.于是,我就自己尝试 ...
- pyqt5制作俄罗斯方块小游戏-----源码解析
一.前言 最近学习pyqt5中文教程时,最后一个例子制作了一个俄罗斯方块小游戏,由于解释的不是很清楚,所以源码有点看不懂,查找网上资料后,大概弄懂了源码的原理. 二.绘制主窗口 将主窗口居中,且设置了 ...
- SQLMap入门——获取当前网站数据库的用户名称
列出当前网站使用的数据库用户 python sqlmap.py -u http://localhost/sqli-labs-master/Less-1/?id=1 --current-user
- 推荐8个提高工作效率的IntelliJ插件
前言 欢迎关注微信公众号「JAVA旭阳」交流和学习 IntelliJ目前已经成为市面上最受欢迎的Java开发工具,这得益于里面非常丰富的插件机制.本文我将分享在日常开发中我经常使用的5个插件,它们可以 ...
- LeetCode HOT 100:子集(简单易懂的回溯)
题目:78. 子集 题目描述: 给你一个整数数组,数组中元素互不相同.返回数组中所有可能的子集,且子集不能重复! 什么是子集?举个例子:原数组[1, 2, 3],[].[1].[1, 2].[1, 3 ...
- Spring IOC官方文档学习笔记(一)之IOC容器概述
1.IOC容器简介 (1) org.springframework.beans 与 org.springframework.context 这两个包是Spring IOC容器的基础,在org.spri ...
- [OpenCV实战]52 在OpenCV中使用颜色直方图
颜色直方图是一种常见的图像特征,顾名思义颜色直方图就是用来反映图像颜色组成分布的直方图.颜色直方图的横轴表示像素值或像素值范围,纵轴表示该像素值范围内像素点的个数或出现频率.颜色直方图属于计算机视觉中 ...
- Codeforces Round #845 (Div. 2) and ByteRace 2023 A-D
Codeforces Round #845 (Div. 2) and ByteRace 2023 A-D A. Everybody Likes Good Arrays! 题意:对给定数组进行操作:删除 ...
- pycharm编辑器下载与使用
pycharm编辑器下载与使用 一.pycharm编辑器 1.pycharm编辑器 PyCharm是一种Python IDE,带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具.比如调 ...