NC50965 Largest Rectangle in a Histogram

题目

题目描述

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:



Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

输入描述

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that \(1 \leq n \leq 100000\) . Then follow n integers \(h1\dots hn\), where \(0 \leq h_i \leq 1000000000\). These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

输出描述

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

示例1

输入

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

输出

8
4000

说明

Huge input, scanf is recommended.

题解

思路

知识点:单调栈。

如果枚举区间,获取区间最小直方,显然是很复杂的。因为区间不同导致的最小值不同,虽然可以用单调队列动态获取某一区间的最小值,但问题在于端点的可能有 \(n^2\) 个,所以复杂度是 \(O(n^2)\) 是不可接受的。

但是换一种角度,我们枚举直方,一共就 \(n\) 个,枚举 \(n\) 次即可。那么固定一个直方,最大的可伸展长度取决于左右第一个小于它的位置,找到长度乘以直方高度就是矩形面积了。

对于一个直方,左边最邻近小于用单调递增栈从左到右维护,右边同理从右到左维护,注意找到的位置是小于的那个直方的位置,而不是可伸展最大的位置,因此左边的需要加一,右边的需要减一。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int h[100007];
int l[100007], r[100007];
///最大矩形高度肯定是某个矩形高度
///对于一个矩形,水平扩展距离取决于第一个比他小的,两边都是
///于是对每个矩形,用单调递增栈获得他左侧/右侧第一个比它小的矩形位置,就能知道左侧/右侧扩展距离
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (cin >> n, n) {
for (int i = 0;i < n;i++) cin >> h[i];
stack<int> s1;
for (int i = 0;i < n;i++) {
while (!s1.empty() && h[s1.top()] >= h[i]) s1.pop();
l[i] = s1.empty() ? 0 : s1.top() + 1;///左侧大于等于的第一个位置
s1.push(i);
}
stack<int> s2;
for (int i = n - 1;i >= 0;i--) {
while (!s2.empty() && h[s2.top()] >= h[i]) s2.pop();///一定是大于等于,于是栈就是严格递减栈,元素是最靠右的
r[i] = s2.empty() ? n - 1 : s2.top() - 1;///右侧大于等于的最后一个位置
s2.push(i);
}
long long ans = 0;
for (int i = 0;i < n;i++)
ans = max(ans, (r[i] - l[i] + 1LL) * h[i]);
cout << ans << '\n';
}
return 0;
}

NC50965 Largest Rectangle in a Histogram的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  5. Largest Rectangle in a Histogram(HDU1506)

    Largest Rectangle in a Histogram HDU1506 一道DP题: 思路:http://blog.csdn.net/qiqijianglu/article/details/ ...

  6. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  7. Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 777  Solved: 22 ...

  8. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  9. hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. 【VMware】在移动硬盘或U盘中安装便携linux系统

    背景: 操作系统课需要在Linux环境下进行编程.本来是给了个傻瓜式的Ubuntu虚拟机镜像,但奈何虚拟机这东西我这老本子跑起来巨卡,装双系统又卡,只能选择把系统装进便携设备里了. 前期准备: 一个2 ...

  2. [笔记] K-D Tree

    一种可以 高效处理 \(k\) 维空间信息 的数据结构. 在正确使用的情况下,复杂度为 \(O(n^{1-\frac{1}{k}})\). K-D Tree 的实现 建树 随机一维选择最中间的点为当前 ...

  3. MybatisPlus常用注解

    一.@TableName value属性 实体类的名字是User,数据库表名是t_user @TableName(value = "t_user") public class Us ...

  4. 记将一个大型客户端应用项目迁移到 dotnet 6 的经验和决策

    在经过了两年的准备,以及迁移了几个应用项目积累了让我有信心的经验之后,我最近在开始将团队里面最大的一个项目,从 .NET Framework 4.5 迁移到 .NET 6 上.这是一个从 2016 时 ...

  5. 扩展.Net Core Identity Server 授权方式,实现 手机号+ 验证码 登录

    背景 国内来讲,注册/登录流程都是尽可能的简单,注册流程复杂,容易流失客户.手机号 + 短信验证码的方式非常普遍:但是框架默认并没有类似的功能,需要我们自己进行扩展. 思路 验证登录手机号为注册用户, ...

  6. sklearn机器学习实战-KNN

    KNN分类 KNN是惰性学习模型,也被称为基于实例的学习模型 简单线性回归是勤奋学习模型,训练阶段耗费计算资源,但是预测阶段代价不高 首先工作是把label的内容进行二值化(如果多分类任务,则考虑On ...

  7. PowerJob高级特效-容器部署完整教程

    介绍 powerjob提供了容器功能,用来做一些灵活的任务处理.这里容器为 JVM 级容器,而不是操作系统级容器(Docker).(至于为什么取"容器"这个有歧义的名字是因为作者没 ...

  8. 【算法】归并排序(Merge Sort)(五)

    归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  9. SpringMVC和spring集成

    步骤:1.web.xml中配置spring的监听和spring配置文件位置 2.编写spring类并在spring的配置文件里配置bean 说明:源码中spring核心配置文件导入springAnno ...

  10. 随笔总结:8086CPU的栈顶超界问题

    我们学习编程都知道栈的超界限问题是非常严重的问题,他可能会覆盖掉其他数据,并且我们不知道这个数据是我们自己保存的用于其他用途的数据还是系统的数据,这样常常容易引发一连串的问题. 在学习汇编的时候,我们 ...