Bi-LSTM(Attention)

@

1.理论

1.1 文本分类和预测(翻译)

文本分类的输入处理和预测(翻译)不同:

  1. 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量,
  2. 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来训练,不需要one-hot向量

1.2 注意力模型

1.2.1 Attention模型

注意力机制(Attention Mechanism)的本质是对于给定目标,通过生成一个权重系数对输入进行加权求和,来识别输入中哪些特征对于目标是重要的,哪些特征是不重要的;

为了实现注意力机制,我们将输入的原始数据看作<Key,Value>键值对的形式,根据给定的任务目标中的查询值Query计算Key与Query之间的相似系数,可以得到Value值对应的权重系数,即注意力权重,之后再用权重系数对Value值进行加权求和,即可得到输出.我们使用Q,K,V分别表示Query,Key和Value.

注意力机制在深度学习各个领域都有很多的应用.不过需要注意的是,注意力并不是一个统一的模型,它只是一个机制,在不同的应用领域有不同的实现方法。

  • 注意力权重系数W的公式如下:\(W=softmax⁡(QK^T)\)
  • 注意力权重系数W与Value做点积操作(加权求和)得到融合了注意力的输出:

    \(Attention(Q,K,V)=W⋅V=softmax⁡(QK^T)⋅V\)

注意力模型的详细结构如下图所示:

在本实验中,Query是指final_hidden_state,Key和Value都是指lstm_output,注意力权重W是指attn_weights

  1. 两个输入值用bmm()进行加权求和得到注意力权重attn_weights(由于final_hidden_state是一维的,所以不需要像seq2seq2中一样遍历时间步)
  2. 然后注意力权重attn_weights和lstm_output再进行用bmm()进行加权求和,得到context,即融合了注意力的输出(不同任务处理方式不同,Bi-LSTM文本分类不需要和Seq2Seq任务一样把context再和decoder_output进行combine和fc)

1.2.2 Bi-LSTM(Attention)模型结构

文本分类中的Attention结构:

2.实验

2.1 实验步骤

  1. 数据预处理,得到字典、样本数等基本数据
  2. 构建Bi-LSTM(Attention)模型,分别设置模型的输入
  3. 训练
    1. 代入数据
    2. 得到模型输出值,取其中最大值的索引,找到字典中对应的字母,即为模型预测的下一个字母.
    3. 把模型输出值和真实值相比,求得误差损失函数,运用Adam动量法梯度下降
  4. 测试
  5. 可视化注意力权重矩阵

2.2 算法模型

"""
Task: 基于Bi-LSTM和注意力机制的文本情感分类
Author: ChengJunkai @github.com/Cheng0829
Email: chengjunkai829@gmail.com
Date: 2022/09/14
Reference: Tae Hwan Jung(Jeff Jung) @graykode
""" import numpy as np
import torch, time, os, sys
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import matplotlib.pyplot as plt '''1.数据预处理'''
def pre_process(sentences):
word_sequence = " ".join(sentences).split()
word_list = []
'''
如果用list(set(word_sequence))来去重,得到的将是一个随机顺序的列表(因为set无序),
这样得到的字典不同,保存的上一次训练的模型很有可能在这一次不能用
(比如上一次的模型预测碰见i:0,love:1,就输出you:2,但这次模型you在字典3号位置,也就无法输出正确结果)
'''
for word in word_sequence:
if word not in word_list:
word_list.append(word)
word_dict = {w:i for i, w in enumerate(word_list)}
word_dict["''"] = len(word_dict)
word_list = word_list.append("''")
vocab_size = len(word_dict) # 词库大小16
max_size = 0
for sen in sentences:
if len(sen.split()) > max_size:
max_size = len(sen.split()) # 最大长度3
for i in range(len(sentences)):
if len(sentences[i].split()) < max_size:
sentences[i] = sentences[i] + " ''" * (max_size - len(sentences[i].split())) return sentences, word_list, word_dict, vocab_size, max_size def make_batch(sentences):
# 对于每个句子,返回包含句子内每个单词序号的列表
inputs = [np.array([word_dict[n] for n in sen.split()]) for sen in sentences] # [6,3]
targets = [out for out in labels]
inputs = torch.LongTensor(np.array(inputs)).to(device)
targets = torch.LongTensor(np.array(targets)).to(device)
'''情感分类构建嵌入矩阵,没有eye()'''
return inputs, targets class BiLSTM_Attention(nn.Module):
def __init__(self):
super(BiLSTM_Attention, self).__init__()
'''情感分类构建嵌入矩阵,没有eye()'''
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, n_hidden, bidirectional=True)
self.out = nn.Linear(2*n_hidden, num_classes) def forward(self, X):
# input : [batch_size, n_step, embedding_dim] [6,3,2]
input = self.embedding(X)
# input : [n_step, batch_size, embedding_dim] [3,6,2]
# input : [输入序列长度(时间步长度),样本数,嵌入向量维度]
input = input.permute(1, 0, 2)
# hidden_state : [num_layers(=1)*num_directions(=2), batch_size, n_hidden]
# hidden_state : [层数*网络方向,样本数,隐藏层的维度(隐藏层神经元个数)]
hidden_state = torch.zeros(1*2, len(X), n_hidden).to(device)
# cell_state : [num_layers*num_directions, batch_size, hidden_size]
# cell_state : [层数*网络方向,样本数,隐藏层的维度(隐藏层神经元个数)]
cell_state = torch.zeros(1*2, len(X), n_hidden).to(device)
# final_hidden_state, final_cell_state : [num_layers(=1)*num_directions(=2), batch_size, n_hidden]
ltsm_output, (final_hidden_state, final_cell_state) = self.lstm(input, (hidden_state, cell_state))
# ltsm_output : [batch_size, n_step, n_hidden*num_directions(=2)]
ltsm_output = ltsm_output.permute(1, 0, 2)
attn_output, attention = self.attention_net(ltsm_output, final_hidden_state)
# model : [batch_size, num_classes], attention : [batch_size, n_step]
return self.out(attn_output), attention '''两次bmm加权求和,相当于两次for循环'''
# lstm_output : [batch_size, n_step, n_hidden*num_directions(=2)] [6,3,16]
# final_hidden_state : [num_layers(=1)*num_directions(=2), batch_size, n_hidden] [2,6,8]
def attention_net(self, lstm_output, final_hidden_state):
# final_hidden_state : [batch_size, n_hidden*num_directions(=2), 1(=n_layer)] [6,16,1]
final_hidden_state = final_hidden_state.view(-1, 2*n_hidden, 1) '''第一次bmm加权求和:: lstm_output和final_hidden_state生成注意力权重attn_weights'''
# [6,3,16]*[6,16,1] -> [6,3,1] -> attn_weights : [batch_size, n_step] [6,3]
attn_weights = torch.bmm(lstm_output, final_hidden_state).squeeze(2) # 第3维度降维
softmax_attn_weights = F.softmax(attn_weights, 1) # 按列求值 [6,3] '''第二次bmm加权求和 : lstm_output和注意力权重attn_weights生成上下文向量context,即融合了注意力的模型输出'''
# [batch_size, n_hidden*num_directions, n_step] * [batch_size,n_step,1] \
# = [batch_size, n_hidden*num_directions, 1] : [6,16,3] * [6,3,1] -> [6,16,1] -> [6,16]
context = torch.bmm(lstm_output.transpose(1, 2), softmax_attn_weights.unsqueeze(2)).squeeze(2)
softmax_attn_weights = softmax_attn_weights.to('cpu') # numpy变量只能在cpu上 '''各个任务求出context之后的步骤不同,LSTM的上下文不需要和Seq2Seq中的一样和decoder_output连接'''
return context, softmax_attn_weights.data.numpy() if __name__ == '__main__':
chars = 30 * '*'
embedding_dim = 3 # embedding size
n_hidden = 8 # number of hidden units in one cell
num_classes = 2 # 0 or 1
'''GPU比CPU慢的原因大致为:
数据传输会有很大的开销,而GPU处理数据传输要比CPU慢,
而GPU在矩阵计算上的优势在小规模神经网络中无法明显体现出来
'''
device = ['cuda:0' if torch.cuda.is_available() else 'cpu'][0]
# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "don't leave", \
"i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0] # 1 is good, 0 is not good. '''1.数据预处理'''
sentences, word_list, word_dict, vocab_size, max_size = pre_process(sentences)
inputs, targets = make_batch(sentences) '''2.构建模型'''
model = BiLSTM_Attention()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001) if os.path.exists('model_param.pt') == True:
# 加载模型参数到模型结构
model.load_state_dict(torch.load('model_param.pt', map_location=device)) '''3.训练'''
print('{}\nTrain\n{}'.format('*'*30, '*'*30))
loss_record = []
for epoch in range(10000):
optimizer.zero_grad()
output, attention = model(inputs)
output = output.to(device)
loss = criterion(output, targets)
loss.backward()
optimizer.step()
print(loss)
if loss >= 0.001: # 连续30轮loss小于0.01则提前结束训练
loss_record = []
else:
loss_record.append(loss.item())
if len(loss_record) == 30:
torch.save(model.state_dict(), 'model_param.pt')
break if (epoch + 1) % 1000 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'Loss = {:.6f}'.format(loss))
torch.save(model.state_dict(), 'model_param.pt') '''4.测试'''
print('{}\nTest\n{}'.format('*'*30, '*'*30))
test_text = 'sorry i hate you'
# 返回包含每个单词序号的列表矩阵(为了有2个维度,还要加一个中括号升维)
tests = [np.array([word_dict[n] for n in test_text.split()])]
test_batch = torch.LongTensor(np.array(tests)).to(device)
predict, attn_test = model(test_batch)
predict = predict.data.max(1, keepdim=True)[1]
print('The emotion of "%s" is '%test_text, end='')
if predict[0][0] == 0:
print('bad!')
else:
print('good!') '''5.可视化注意力权重矩阵'''
fig = plt.figure(figsize=(0.5*len(sentences), 0.5*len(sentences[0]))) # [batch_size, n_step]
ax = fig.add_subplot(1, 1, 1)
# attention : (6, 3)
ax.matshow(attention, cmap='viridis')
word_show = ['单词'] * len(sentences[0])
word_show = [word_show[i] + str(i+1) for i in range(len(sentences[0]))] # ['word_1', 'word_2', 'word_3']
ax.set_xticklabels([''] + word_show, fontdict={'fontsize': 14} , fontproperties='SimSun')
sentence_show = ['句子'] * len(sentences)
sentence_show = [sentence_show[i] + str(i+1) for i in range(len(sentence_show))] # ['sentence_1', 'sentence_2', 'sentence_3', 'sentence_4', 'sentence_5', 'sentence_6']
ax.set_yticklabels([''] + sentence_show, fontdict={'fontsize': 14}, fontproperties='SimSun')
plt.show()

NLP之基于Bi-LSTM和注意力机制的文本情感分类的更多相关文章

  1. NLP之基于TextCNN的文本情感分类

    TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在 ...

  2. 基于Bert的文本情感分类

    详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reaso ...

  3. NLP文本情感分类传统模型+深度学习(demo)

    文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交 ...

  4. pytorch 文本情感分类和命名实体识别NER中LSTM输出的区别

    文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param inpu ...

  5. NLP(二十二)利用ALBERT实现文本二分类

      在文章NLP(二十)利用BERT实现文本二分类中,笔者介绍了如何使用BERT来实现文本二分类功能,以判别是否属于出访类事件为例子.但是呢,利用BERT在做模型预测的时候存在预测时间较长的问题.因此 ...

  6. NLP采用Bert进行简单文本情感分类

    参照当Bert遇上Kerashttps://spaces.ac.cn/archives/6736此示例准确率达到95.5%+ https://github.com/CyberZHG/keras-ber ...

  7. 自注意力机制(Self-attention Mechanism)——自然语言处理(NLP)

    近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机 ...

  8. AAAI2018中的自注意力机制(Self-attention Mechanism)

    近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年 ...

  9. LSTM实现中文文本情感分析

    1. 背景介绍 文本情感分析是在文本分析领域的典型任务,实用价值很高.本模型是第一个上手实现的深度学习模型,目的是对深度学习做一个初步的了解,并入门深度学习在文本分析领域的应用.在进行模型的上手实现之 ...

随机推荐

  1. BZOJ3037 创世纪(基环树DP)

    基环树DP,攻的当受的儿子,f表选,g表不选.并查集维护攻受关系.若有环则记录,DP受的后把它当祖宗,再DP攻的. #include <cstdio> #include <iostr ...

  2. 跟我学Python图像处理丨基于灰度三维图的图像顶帽运算和黑帽运算

    摘要:本篇文章结合灰度三维图像讲解图像顶帽运算和图像黑猫运算,通过Python调用OpenCV函数实现. 本文分享自华为云社区<[Python图像处理] 十三.基于灰度三维图的图像顶帽运算和黑帽 ...

  3. HttpServletResponse 类

    HttpServletResponse 类的作用 HttpServletResponse 类和 HttpServletRequest 类一样.每次请求进来,Tomcat 服务器都会创建一个 Respo ...

  4. R型医用变压器为什么越来越受大众喜爱?

    传统的家用电器.手机行业在2018年给电子变压器领域产生重要的冲击性,现如今,智能医疗领域日渐增加,正好是R型医疗变压器行业转型的突破口. 近些年,在我国医疗器械领域因为一个新的科技进步和工程设计持续 ...

  5. 简单html js css 轮播图片,不用jquery

    这个是自己修改的轮播图片,在网上有的是flash 实现的轮播图片,对搜索引擎不友好, 比如:dedecms 的首页的轮播图是用flash实现滚动的. 所以这个自己修改了一下,实现html+js+css ...

  6. 【Java】学习路径33-在IDEA中使用junit单元测试运行单个方法

    首先在菜单找到 文件-项目结构 项目设置-库-"+" 选择Java 找到IDEA安装目录,打开lib/junit4.jar 的jar包,然后打开即可. 然后选择确定. 然后再项目中 ...

  7. 创建一个k8s私有仓库-harbor

    〇.前言 这一步应该是在搭建k8s之前做好,注意了奥 一.安装docker和docker-compose 1.下载docker-compose的最新版本 # 建议那种网上冲浪下载!,下载下来记得命名成 ...

  8. 1.关于433MHz按键单片机解码

    近段时间做项目要用到单片机接收433MHz按键发过来的码值,涉及短按.连按.长按,由于之前没有做过这方面一开始有点蒙,找遍网上都没有案例,现在项目完成了整理自己的一些心得和大家分享分享!!!直入主题. ...

  9. 这份数据安全自查checklist请拿好,帮你补齐安全短板的妙招全在里面!

    企业数据安全自查Checklist! 快来对照表单,看看你的数据安全及格了吗? 一.京东云安全Checklist建议 京东云安全拥有业界领先的安全研究团队,经过多年实践与经验积累,京东云已面向不同业务 ...

  10. CSS之垂直水平居中的背后

    最开始,我想说,这个体系有点大,我写的并不好.就当作是一个思路吧,虽然这个思路有点乱.几乎每一个实现方案的背后都是该属性及其组合的原理,每一个都要剖析其规范细节的话,这篇文章绝不会是这样的篇幅,所以每 ...