题目传送门

位运算

设题目中序列 \(w_1,w_1 \& w_2,w_1 \& w_2 \& w_3,\dots,w_1 \& w_2 \& \dots \& w_n\) 为序列 \(A\)。

因为是数字一个一个 \(\&\) 到之前的结果上,所以可以知道 \(A\) 序列单调不增。

从给出的样例中发现,似乎没有答案超过 \(2\) 的情况

证明:

假设答案 \(>2\),则说明 \(A\) 序列至少中出现过了 \(0,1,2\),因为 \(A\) 序列单调不增,所以假设当前的 \(A_i\) 为 \(2\),必须后面的数出现 \(1\) 和 \(0\) 才可以。但 \(2\) 的二进制末位为 \(0\),无论怎么 \(\&\) ,后面的数也不可能出现 \(1\),假设不成立,所以答案不可能 \(>2\)。

结论:

答案为 \(0\),\(1\) 或 \(2\)。

判断答案

  • 首先考虑答案为 \(0\) 的情况,即 \(A\) 序列中没有出现过 \(0\):

\(A\) 序列中没有出现过 \(0\),即说明对于所有 \(w\),在二进制下至少有一位都是 \(1\),不然 \(\&\) 后就会变 \(0\)。

那么如何判断是否有一条路径上所有边权在二进制下至少有一位都是 \(1\)?

考虑用并查集维护。因为 \(w<=2^{30}\),所以可以开 \(30\) 个并查集,分别维护每一位上是 \(1\) 的边权所连接的点的集合,然后要判断求的两点是否在其中一张图中连通即可。

  • 再看答案为 \(1\) 的情况,即 \(A\) 序列中出现过 \(0\) 但没有出现过 \(1\):

\(A\) 序列中没有出现过 \(1\),即说明对于 \(A\) 序列前某一部分 \((i<k)\),\(a_i>1\),而 \(a_k\) 及之后都是 \(0\)。

先考虑如何保证 \(A\) 序列前某一部分 \((i<k)\),\(a_i>1\)。这个和答案为 \(0\) 的情况很像,只要所有 \(w_i(i<k)\) 中至少有一位都是 \(1\) 即可。但特别地,这一位不能是末位,否则 \(a_{k-1}\) 就变 \(1\) 了。

然后就只要判断之后是否有一条边可以使 \(\&\) 之后结果为 \(0\) 即可。

如何维护?

先上结论:只要保证末位有一个 \(0\) 即可。先把之前判断答案是否为 \(0\) 的并查集借过来,然后事先找好哪些边权末位为 \(0\),将与这些边相邻的点和一个虚点 \(0\) 连起来。如果后询问中出发点 \(u\) 可以和虚点 \(0\) 连通,那么答案就为 \(1\) 了。

证明:如果后询问中出发点 \(u\) 可以和虚点 \(0\) 连通,就意味着 \(u\) 在某一位上 (不为末位)可经过连续的几个 \(1\),保证了 \(a_i>1\)。然后可以走到一位末位为 \(0\) 的,\(a_i\) 的末位就会变成 \(0\)。之后,因为不存在某一位全部为 \(1\) 的(已经被判掉了),所以可以保证 \(a_i\) 的其他位最终也会变成 \(0\)。

这一部分有点绕,建议花点时间自己举几个例子好好理解一下。

  • 最后,都不是这两种情况的答案就为 \(2\)。

那么,如何方便地实现并查集?

便利の并查集

可以写到一个结构体里。(涨芝士了

比如:

struct DSU{
int fa[100005];
DSU(){for(int i=0;i<=100000;i++)fa[i]=i;} //初始化
int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);} //find
void merge(int x,int y){fa[find(x)]=find(y);} //合并
bool query(int x,int y){return find(x)==find(y);} //判断
}x[35];

合并:

x[i].merge(u,v);

判断联通:

if(x[i].query(u,v))

要开多个并查集时很方便,比写二维数组要清楚。

完整代码

#include<bits/stdc++.h>
using namespace std;
int n,m,q,u,v,w;
bool mark[100005];
struct DSU{ //还是喜欢不压行
int fa[100005];
DSU(){
for(int i=0;i<=100000;i++) fa[i]=i;
}
int find(int x){
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void merge(int u,int v){
fa[find(u)]=find(v);
return ;
}
bool query(int u,int v){
return find(u)==find(v);
}
}x[35],y[35];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&u,&v,&w);
for(int j=0;j<30;j++){
if((w>>j)&1) x[j].merge(u,v); //j位是1的连起来
}
if(!(w&1)) mark[u]=mark[v]=1; //末位不是1做标记
}
for(int i=1;i<=30;i++){ //从1开始
y[i]=x[i];
for(int j=1;j<=n;j++){
if(mark[j]) y[i].merge(j,0); //有标记和0连
}
}
scanf("%d",&q);
for(int i=1;i<=q;i++){
scanf("%d%d",&u,&v);
bool fl=0;
for(int j=0;j<30;j++){ //从0开始
if(x[j].query(u,v)){
printf("0\n"),fl=1;
break;
}
}
if(fl) continue;
for(int j=1;j<30;j++){ //从1开始
if(y[j].query(u,0)){
printf("1\n"),fl=1;
break;
}
}
if(fl) continue;
printf("2\n");
}
return 0;
}

【题解】CF1659E AND-MEX Walk的更多相关文章

  1. Usaco2012-2013 金组 题解 (暂缺Hill walk以及Figue eight)

    https://files.cnblogs.com/files/Winniechen/usaco2012-2013.pdf 做的不是很好,还请见谅! 如果有什么疑问,可以QQ上找我. QQ号:1967 ...

  2. CF1139E Maximize Mex 题解【二分图】

    我发现我有道叫[SCOI2010]连续攻击游戏的题白写了.. Description There are \(n\) students and \(m\) clubs in a college. Th ...

  3. Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解

    Google Kick Start 2019 C轮 第一题 Wiggle Walk 题解 题目地址:https://codingcompetitions.withgoogle.com/kickstar ...

  4. [HG]walk 题解

    前言 学长博客划水,抄题解,差评. 于是我来重新写一篇正常的题解,虽然解法跟标程不一样,但是复杂度是一样的. 题面 题目描述 在比特镇一共有\(n\)个街区,编号依次为\(1\)到\(n\),它们之间 ...

  5. BZOJ3339:Rmq Problem & BZOJ3585 & 洛谷4137:mex——题解

    前者:https://www.lydsy.com/JudgeOnline/problem.php?id=3339 后者: https://www.lydsy.com/JudgeOnline/probl ...

  6. BZOJ3076 & 洛谷3081:[USACO2013 MAR]Hill Walk 山走——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3076 https://www.luogu.org/problemnew/show/P3081#sub ...

  7. 题解报告:hdu 1142 A Walk Through the Forest

    题目链接:acm.hdu.edu.cn/showproblem.php?pid=1142 Problem Description Jimmy experiences a lot of stress a ...

  8. csp-s模拟65Simple,Walk, Travel,棋盘题解

    题面:https://www.cnblogs.com/Juve/articles/11639923.html simple: 考试时只想到的暴力exgcd判断 考虑n,m互质的情况: 我们枚举y,对于 ...

  9. 洛谷4137 mex题解 主席树

    题目链接 虽然可以用离线算法水过去,但如果强制在线不就gg了. 所以要用在线算法. 首先,所有大于n的数其实可以忽略,因为mex的值不可能大于n 我们来设想一下,假设已经求出了从0到n中所有数在原序列 ...

随机推荐

  1. 【java】学习路径25-ArrayList类,Vector类,LinkedList类的使用和区别,Iterator迭代器的使用

    ArrayList的使用 ArrayList类:可变化长度的数组. 与一般的数组不同的是,其长度不固定,可以添加任意类型的数据. 也可以添加不同类型的数据,但是一般不这么做. ArrayList类位于 ...

  2. ABAQUS和UG许可证冲突问题的解决方案

    前段时间重新安装了ABAQUS,更新到了2020版本后,发现NX UG怎么突然打不开了,搜索一下,发现是两个许可证有冲突.找了很多解决方案,主要归纳为以下两种: 方法一:Lmtools修改法 先说结论 ...

  3. Linux安装Jenkins及配置svn使用

    目录 1. 下载 2. 创建文件夹 3. 安装 4. 修改端口,不用这步 5. 安装插件提速 6. 启动 7. 页面访问 8. 新建用户 9. 安装Subversion插件 10. 安装maven插件 ...

  4. mydodo协议

    mydodo协议 目录 数据帧结构 命令 协议 代码样例 数据帧结构 帧头1 帧头2 设备号 命令 数据长度 数据 0x4D 0x59 xxx cmd nByte data 例子:设备my01 的继电 ...

  5. 全网最全Redis学习

    一.Redis简介 Redis是以Key-Value形式进行存储的NoSQL数据库,C语言进行编写的.平时操作的数据都在内存中,效率特高,读的效率110000/s,写81000/s,所以多把Redis ...

  6. Windows Powershell安装错误

    今天需要更新一下VMware的 powercli.使用命令install-module -Name VMware.PowerCLI -AllowClobber但是遇到一个错误. Unable to r ...

  7. 学习完nio的一个小笔记吧

    这是一个nio网络通信服务端的demo,主要就学习了selector的一些用法,以及它里面的事件类型 selector是对nio的一个优化,它能保证既能高效处理线程中的事件,又能保证线程不会一直占用c ...

  8. Elasticsearch: rollover API

    rollover使您可以根据索引大小,文档数或使用期限自动过渡到新索引. 当rollover触发后,将创建新索引,写别名(write alias)将更新为指向新索引,所有后续更新都将写入新索引. 对于 ...

  9. Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 ( 一)

  10. Solutions:Elastic SIEM - 适用于家庭和企业的安全防护 ( 二)