参考自http://www.pytables.org/usersguide/introduction.html

PyTables的主要目的是提供一个好的操作HDF5文件的方法。

HDF文件是分层数据格式(Hierarchical Data Format)的简称。数据主要由组(Groups)和数据集(Datasets)组成。其中,组的作用类似于文件夹,用于包含数据集或者其他组。组之间层层包含,构成了分层次的结构。由于HDF5文件具有分层存储的特点,可以保存元数据,支持多种压缩模式,具有即时压缩的特点。因此HDF5文件非常适合存储大容量,包含元信息的科学数据。

PyTables的数据形式

在PyTables中的数据集主要有两种形式: 表(tables)和数组(array)。

其中,表是由结构相同的记录(records)组成。记录存储了不同的字段(fields),每个字段的存储的变量的数据类型是相同的。在HDF5的术语中,表中的记录也被称为复合数据类型。

比如,声明一个类(class),包含命名的字段和类型信息:

class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # signed 64-bit integer
ADCcount = UInt16Col() # unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = Int32Col() # integer # A sub-structure (nested data-type)
class Properties(IsDescription):
pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = Float64Col(shape=(2,3,4)) # 3-D float array (double-precision)

之后,就可以基于这个类构造表,然后向其中写数据并保存。

另一个重要的是数组,他类似于表,但不同之处在于其中所有的组件都是同构的。它们有不同的特点,比如泛型,可扩展,可变长度。

主要特性

Pytables具有如下优点:Python所具备的面向对象和可内省,HDF5强大的数据管理功能,NumPy的灵活性,以及Numexpr对大规模网格对象数据的操作能力。具有以下特性:

  • 支持表实体:可以定制数据,在表中添加或删除记录。还支持大量行(最多 2**63,远超出内存容量)。
  • 多维和嵌套表的单元格:表中的元素可以是任意维度的数据。可以声明由其他列组成的列。
  • 对表列的索引支持:对于大型表,并且想要快速查找满足某些条件的列中的值,则非常有用。
  • 支持数值数组:NumPy数组,可用作表的有用补充,以存储同类数据。
  • 可扩展的数组:在磁盘上的现有数组中的任何一个维度添加新元素。此外,您可以使用强大的扩展切片机制访问数据集的一部分,而无需将所有完整的数据集加载到内存中。
  • 可变长度数组:数组中的元素数量可以因行而异。这在处理复杂数据时提供了很大的灵活性。
  • 支持分层数据模型:允许用户清晰地构建所有数据。 PyTables 在内存中构建了一个对象树,用于复制底层文件数据结构。访问文件中的对象是通过遍历和操作此对象树来实现的。
  • 用户定义的元数据:除了支持系统元数据(如表格的行数、形状、风格等)外,还可以指定任意元数据(例如,室温或收集的 IP 流量协议)作为补充实际数据的含义。
  • 读取/修改通用 HDF5 文件的能力:PyTables可以访问和修改大多数 HDF5 文件,例如复合类型数据集(可以映射到 Table 对象)、同构数据集(可以映射到 Array 对象)或可变长度记录数据集(可以映射到 VLArray 对象)。此外,如果一个数据集不受支持,它将被映射到一个特殊的 UnImplemented 类(请参阅 UnImplemented 类),这将使用户看到数据在那里,尽管它无法访问(仍然可以访问数据集中的属性和一些元数据)。
  • 数据压缩:支持即时数据压缩(使用 Zlib、LZO、bzip2 和 Blosc 压缩库)。当您有重复模式时,启用压缩可以节省分析数据的时间。
  • 高性能 I/O:表和数组对象的读写速度仅受底层 I/O 子系统性能的限制。此外,如果您的数据是可压缩的,那么这个限制也是可以克服的!
  • 支持大于 2 GB 的文件
  • 与架构无关:可以在大端机器(如 Sparc 或 MIPS)上编写文件并在小端机器(如 Intel 或 Alpha)上读取。此外,在 64 位平台(Intel-64、AMD-64、PowerPC-G5、MIPS、UltraSparc)上成功进行了测试。

对象树(The Object tree)

PyTables可以在一个树状结构中管理表和数组。为了实现这个功能,PyTables动态地创建了对象树的结构,从而模拟HDF5在磁盘中的存储方式。通过遍历动态树实现对HDF5对象的读取。通过检查节点的元数据(metadata),可以了解对象中存储了什么格式的数据。

在对象树中不同的节点,是PyTables类中的实体。有几种类,但最重要的类是结点(Node),组(Group)和叶(Leaf)类。Pytables树中所有的节点(nodes)都是结点(Node)类的实体。组和叶都是Node类的子类。组实体是包含了0个或更多个叶节点的组结构。叶实体是不再包含其他组或叶,只包含实际数据的容器。表(Table),数组(Array),CArray,Earray,VLArray,以及未定(UnImplemented)类则是叶的子类。

对组和叶进行操作类似于在Unix文件系统中对文件夹和文件进行操作。在 PyTables 中,对象树中的对象通常通过完整(绝对)路径名来引用。此完整路径可以指定为字符串(例如 '/subgroup2/table3',使用"/"作分隔符),或者以自然命名访问(例如file.root.subgroup2.table3)。

并非文件中的所有数据都加载到对象树中。元数据(即,描述实际数据结构的特殊数据)仅在用户希望访问时才加载。此外,实际数据直到用户请求时才读取。使用对象树(元数据),您可以检索有关磁盘上对象的信息,例如表名、标题、列名、列中的数据类型、行数,组的形状、类型码等。您还可以在树中搜索特定类型的数据,然后读取并处理这些数据。

值得注意的是,PyTables采用了元数据缓存系统,该系统延迟加载节点(即按需加载),并卸载一段时间未使用的节点。需要强调的是,节点在未被引用之后进入缓存,并且可以直接从缓存中恢复,而无需从磁盘执行反序列化过程。此功能允许以低内存消耗快速处理具有大型层次结构的文件,同时保留以前实现的对象树的所有强大浏览功能。

为了更好地理解这个对象树实体的动态特性,让我们从一个示例PyTables脚本(可以在examples/objecttree.py中找到)开始创建一个HDF5文件:

import tables as tb

class Particle(tb.IsDescription):
identity = tb.StringCol(itemsize=22, dflt=" ", pos=0) # character String
idnumber = tb.Int16Col(dflt=1, pos = 1) # short integer
speed = tb.Float32Col(dflt=1, pos = 2) # single-precision # 以写模式打开一个文件
fileh = tb.open_file("objecttree.h5", mode = "w") # 得到HDF5根组
root = fileh.root # 创建组
group1 = fileh.create_group(root, "group1")
group2 = fileh.create_group(root, "group2") # 在根组中创建数组1
array1 = fileh.create_array(root, "array1", ["string", "array"], "String array") # 分别在组1,2中创建表1,2
table1 = fileh.create_table(group1, "table1", Particle)
table2 = fileh.create_table("/group2", "table2", Particle) # 在组1中创建最后一个表
array2 = fileh.create_array("/group1", "array2", [1,2,3,4]) # 填充表格
for table in (table1, table2):
# Get the record object associated with the table:
row = table.row # Fill the table with 10 records
for i in range(10):
# First, assign the values to the Particle record
row['identity'] = f'This is particle: {i:2d}'
row['idnumber'] = i
row['speed'] = i * 2. # This injects the Record values
row.append() # Flush the table buffers
table.flush() # Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

这个小程序创建了一个名为 objecttree.h5 的 HDF5 文件,其结构如图 所示。创建文件时,对象树中的元数据会在内存中更新,而实际数据会保存到磁盘。当您关闭文件时,对象树不再可用。但是,当您重新打开此文件时,对象树将根据磁盘上的元数据在内存中重建(这是以惰性方式完成的,以便仅加载用户所需的对象),从而允许您使用它与最初创建它时的方式完全相同。

图 1:具有 2 个子组、2 个表和 1 个数组的 HDF5 示例。

在图 2 中,您可以看到读取上述 objecttree.h5 文件时创建的对象树示例(实际上,读取任何受支持的通用 HDF5 文件时总是会创建这样的对象树)。花点时间理解它是值得的,它将帮助您理解内存中 PyTables 对象的关系。

图 2:PyTables 对象树示例。

PyTables学习 (数据保存形式,对象树结构)的更多相关文章

  1. 【学习总结】iOS 数据保存几种方式总结

    在iOS开发过程中,不管是做什么应用,都会碰到数据保存的问题.将数据保存到本地,能够让程序的运行更加流畅,不会出现让人厌恶的菊花形状,使得用户体验更好.下面介绍一下数据保存的方式: NSKeyedAr ...

  2. Android学习笔记——保存数据到SQL数据库中(Saving Data in SQL Databases)

    知识点: 1.使用SQL Helper创建数据库 2.数据的增删查改(PRDU:Put.Read.Delete.Update) 背景知识: 上篇文章学习了保存文件,今天学习的是保存数据到SQL数据库中 ...

  3. Android学习笔记-保存数据的实现方法2-SharedPreferences

    Android下,数据的保存,前面介绍过了,把数据保存到内存以及SD卡上,这次我们就介绍一下,更为常用的采用SharedPreferences的方式来保存数据, 1,得到SharedPreferenc ...

  4. Android学习笔记-保存数据的实现方法1

    Android开发中,有时候我们需要对信息进行保存,那么今天就来介绍一下,保存文件到内存,以及SD卡的一些操作,及方法,供参考. 第一种,保存数据到内存中: //java开发中的保存数据的方式 pub ...

  5. CAD把当前图上数据保存为一个二进流对象(com接口VB语言)

    主要用到函数说明: MxDrawXCustomFunction::WriteBinStreamEx 把当前图上数据保存为一个二进流对象,详细说明如下: 参数 说明 LPCTSTR pszPasswor ...

  6. Libgdx学习记录14——数据保存Preferences,XmlReader

    在游戏过程过程中,常常需要对某些数据进行保存,以确保下次运行时能够正确读取.如游戏中的金币.道具.游戏分数.已通过的关卡等. Libgdx中常用的数据保存方式有Preferences和XmlReade ...

  7. 2018百度之星开发者大赛-paddlepaddle学习(二)将数据保存为recordio文件并读取

    paddlepaddle将数据保存为recordio文件并读取 因为有时候一次性将数据加载到内存中有可能太大,所以我们可以选择将数据转换成标准格式recordio文件并读取供我们的网络利用,接下来记录 ...

  8. Delphi:ClientDataset+TDataSetProvider的数据保存问题

    看到一篇介绍ClientDataSet和TDataSetProvider,非常精彩,特此保存. ==================================================== ...

  9. Python小数据保存,有多少中分类?不妨看看他们的类比与推荐方案...

    小数据存储 我们在编写代码的时候,经常会涉及到数据存储的情况,如果是爬虫得到的大数据,我们会选择使用数据库,或者excel存储.但如果只是一些小数据,或者说关联性较强且存在存储后复用的数据,我们该如何 ...

  10. 深度学习数据特征提取:ICCV2019论文解析

    深度学习数据特征提取:ICCV2019论文解析 Goal-Driven Sequential Data Abstraction 论文链接: http://openaccess.thecvf.com/c ...

随机推荐

  1. LeetCode-386 字典序排数

    来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/lexicographical-numbers 题目描述 给你一个整数 n ,按字典序返回范围 [ ...

  2. Django中获取用户IP方法

    Django中通过request.META可以来获取用户的IP. request.META 是一个Python字典,包含了所有本次HTTP请求的Header信息,比如用户IP地址和用户Agent(通常 ...

  3. pg高可用方案repmgr带witness搭建

    一.总体架构 操作系统版本: linux redhat7.6pg版本: 12.2repmgr版本 5.2192.168.3.73 主库: repmgr+master192.168.3.74 从库1: ...

  4. corundum:100GNIC学习(三)——恢复工程

    前文:(一)https://www.cnblogs.com/shroud404/p/15364812.html (二)https://www.cnblogs.com/shroud404/p/15412 ...

  5. 需要登陆,请求数据 session

    requests中的session模块思路:# 1. 登录 --> 等到cookie# 2.带着cookie 请求到书架的url-->书架上的内容#注意:# 两个操作要连续起来操作# 我们 ...

  6. django的模型层(二)

    django的模型层(二) 一 创建模型 from django.db import models # Create your models here. class Author(models.Mod ...

  7. python 对接各大数据库,快速上手!

      1.mysql 安装pymysql pip intsall pymysql 快速上手 import pymysql # 第一步:连接到数据库 con = pymysql.connect(host= ...

  8. python 通过win32com操作vcf到outlook中,同时解决乱码问题

    之前用的黑莓手机,故障后换了iphone,后来还是想用上黑莓Q10.于是有了该文章. 问题: 如何将iphone上的通讯录导入黑莓? 网上回答1:通过icloud将iphone中的通讯录导入黑莓手机. ...

  9. C++ CLI string

    String^ to std::string ` include <msclr\marshal_cppstd.h> marshal_as(String^) `

  10. 莫烦Python 4

    莫烦Python 4 新建模板小书匠 RNN Classifier 循环神经网络 问题描述 使用RNN对MNIST里面的图片进行分类 关键 SimpleRNN()参数 batch_input_shap ...