任意模数FFT

这是一个神奇的魔法,但是和往常一样,在这之前,先

\(\texttt{orz}\ \color{orange}{\texttt{matthew99}}\)

问题描述

给定 2 个多项式 \(F(x), G(x)\) ,请求出 \(F(x) * G(x)\)。

系数对 p 取模,\(2 \le p \le 10^9+9\)

拆系数FFT

我们考虑令\(M\)为\(\sqrt{p}\),那么我们可以将原本的多项式拆成4个。

\(F(x)=A(x)*M+B(x)\)

\(G(X)=C(X)*M+D(x)\)

然后\(A\),\(B\),\(C\),\(D\)随便乘一下就可以求出答案。

这样需要的\(FFT\)次数为7次。

合并FFT

我们思考一下有没有什么优化的方法呢?

令\(P(x)=A(x)+iB(x)\),\(Q(x)=A(x)-iB(x)\)

\(F_p[k]\)和\(F_q[k]\)分别表示\(P\)和\(Q\)做了\(DFT\)后的\(k\)项系数。

推一推式子可以发现\(F_q[k]=conj(F_p[2L-k])\)。

那么我们只需要1遍\(DFT\)就可以求出这两个东西。

此时我们把模意义下的多项式乘法转换成了复数意义下的多项式乘法,就只需要按照\(FFT\)的过程实现。

把实部与虚部合并即可。

注意此时\(FFT\)的精度十分爆炸,所以用\(long\ double\)并预处理单位根比较好。

/*
mail: mleautomaton@foxmail.com
author: MLEAutoMaton
This Code is made by MLEAutoMaton
*/
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
inline int gi()
{
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return f*sum;
}
const int N=1000010;const long double Pi=acos(-1.0);
int n,m,f[N],g[N],Mod;
struct node
{
long double x,y;
node operator+(const node &b)const{return (node){x+b.x,y+b.y};}
node operator-(const node &b)const{return (node){x-b.x,y-b.y};}
node operator*(const node &b)const{return (node){x*b.x-y*b.y,x*b.y+y*b.x};}
};
int r[N],limit,ans[N];
void fft(node *a,int opt)
{
for(int i=0;i<limit;i++)
if(i<r[i])swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
node Root=(node){cos(Pi/mid),opt*sin(Pi/mid)};
for(int R=mid<<1,i=0;i<limit;i+=R)
{
node W=(node){1,0};
for(int j=0;j<mid;j++,W=W*Root)
{
node X=a[i+j],Y=W*a[mid+i+j];
a[i+j]=X+Y;a[mid+i+j]=X-Y;
}
}
}
}
node a[N],b[N],c[N],d[N];
void mtt()
{
int LIM=(1<<15)-1;
for(int i=0;i<=n;i++)f[i]=(f[i]+Mod)%Mod;for(int i=0;i<=m;i++)g[i]=(g[i]+Mod)%Mod;
for(int i=0;i<=n;i++)a[i]=(node){f[i]&LIM,f[i]>>15};
for(int i=0;i<=m;i++)b[i]=(node){g[i]&LIM,g[i]>>15};
fft(a,1);fft(b,1);
for(int i=0;i<limit;i++)c[i]=a[i],d[i]=b[i];
for(int i=0;i<limit;i++)
{
int j=(limit-i)&(limit-1);
a[i]=(node){0.5*(c[i].x+c[j].x),0.5*(c[i].y-c[j].y)}*d[i];
b[i]=(node){0.5*(c[i].y+c[j].y),0.5*(c[j].x-c[i].x)}*d[i];
}
fft(a,-1);fft(b,-1);
for(int i=0;i<limit;i++)
{
ll ia,ib,ic,id;
ia=(ll)(a[i].x/limit+0.5)%Mod;
ib=(ll)(a[i].y/limit+0.5)%Mod;
ic=(ll)(b[i].x/limit+0.5)%Mod;
id=(ll)(b[i].y/limit+0.5)%Mod;
ans[i]=((ia%Mod+((ib+ic)%Mod<<15))%Mod+(id%Mod<<30))%Mod;
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
#endif
n=gi();m=gi();Mod=gi();
for(int i=0;i<=n;i++)f[i]=gi();for(int i=0;i<=m;i++)g[i]=gi();
limit=1;int l=0;
while(limit<=(n+m))limit<<=1,l++;
for(int i=0;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
mtt();
for(int i=0;i<=n+m;i++)printf("%d ",(ans[i]+Mod)%Mod);
return 0;
}

题目

任意模数NTT

Shell Necklace

任意模数FFT的更多相关文章

  1. 【集训队作业2018】取名字太难了 任意模数FFT

    题目大意 求多项式 \(\prod_{i=1}^n(x+i)\) 的系数在模 \(p\) 意义下的分布,对 \(998244353\) 取模. \(p\) 为质数. \(n\leq {10}^{18} ...

  2. 51nod 1172 Partial Sums V2 卡精度的任意模数FFT

    卡精度的任意模数fft模板题……这道题随便写个表就能看出规律来(或者说考虑一下实际意义),反正拿到这题之后,很快就会发现他是任意模数fft模板题.然后我就去网上抄了一下板子……我打的是最土的任意模数f ...

  3. 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]

    1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...

  4. 拆系数FFT(任意模数FFT)

    拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\ ...

  5. hdu 4656 Evaluation [任意模数fft trick]

    hdu 4656 Evaluation 题意:给出\(n,b,c,d,f(x) = \sum_{i=1}^{n-1} a_ix^i\),求\(f(b\cdot c^{2k}+d):0\le k < ...

  6. 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT)

    再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Blueste ...

  7. 任意模数NTT

    任意模数\(NTT\) 众所周知,为了满足单位根的性质,\(NTT\)需要质数模数,而且需要能写成\(a2^{k} + r\)且\(2^k \ge n\) 比较常用的有\(998244353,1004 ...

  8. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  9. MTT:任意模数NTT

    MTT:任意模数NTT 概述 有时我们用FFT处理的数据很大,而模数可以分解为\(a\cdot 2^k+1\)的形式.次数用FFT精度不够,用NTT又找不到足够大的模数,于是MTT就应运而生了. MT ...

随机推荐

  1. MonoSymbolFileException in CheckLineNumberTable

    Mono.CompilerServices.SymbolWriter.MonoSymbolFileException: Exception of type 'Mono.CompilerServices ...

  2. 各种变异绕过XSS过滤器

    各种变异绕过XSS过滤器(Various variations bypass the XSS filter ) 文章来自:https://www.cnblogs.com/iAmSoScArEd/p/1 ...

  3. 背部——哑铃&杠铃

  4. eclipse debug问题

    出现上面的问题 可能是电脑了 工具栏的run >skip all Breakpoint : 解决办法 再点一次: Eclipse debug不跳转 解决办法

  5. React官方中文文档【安装】

    https://reactjs.org/docs/getting-started.html  //React官方文档地址 1.入门 此页面是React文档和相关资源的概述. React是一个用于构建用 ...

  6. linux系统编程之管道(二)

    今天继续研究管道,话不多说,言归正传: 对于管道,有一定的读写规则,所以这里主要是对它的规则进行探讨,具体规则如下: 规则一: 下面用程序来验证下,还是用上节学的子进程写数据,父进程读取数据的例子,只 ...

  7. LGOJ P2048 [NOI2010]超级钢琴

    题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中A ...

  8. 《BUG创造队》作业8:软件测试与Alpha冲刺(第二天)

    项目 内容 这个作业属于哪个课程 2016级软件工程 这个作业的要求在哪里 实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 BUG创造队 作业学习目标 (1)掌握软件测试基础技术.(2)学习 ...

  9. zentaopms - 禅道项目管理系统部署

    概述 禅道是开源免费的项目管理软件 使用步骤 管理员 添加组织 添加用户 用户权限管理(通过分组确定权限) 产品经理 添加产品 添加模块(隶属于产品) 添加需求(隶属于模块) 添加计划(计划形成“路线 ...

  10. Mysql 日期与时间戳的相互转化

    select CURDATE(); #获取当前的日期,示例:2019-10-29 select UNIX_TIMESTAMP(CURDATE()); #将当前的时间格式转换为时间戳,示例:由2019- ...