import tensorflow as tf
import numpy as np # todo 学习 Session中的参数Config=tf.ConfigProto()的使用。重点是GPU相关的参数 def config_params():
# todo 第二种执行会话的方式
with tf.Graph().as_default():
# 一、构建模型图
print('当前模型的默认图是:{}'.format(tf.get_default_graph()))
# 1、定义2个原始的输入的tensor对象
a = tf.constant(
value=[1,2,3,4,5,6,3,4,3,45,5], dtype=tf.float32, shape=[3, 5], name='a'
)
b = tf.constant(
value=[3,3,3,3,3,3234,56,324,3,5], dtype=tf.float32, shape=[5, 3]
) # 2、用op add对上述两个常量分别加一个随机数
v1 = a + np.random.random_sample()
v2 = tf.add(b, tf.random_normal(shape=[], dtype=tf.float32, seed=43)) # 3、使用2个tensor矩阵相乘。
rezult = tf.matmul(v1, v2)
print(a, b, v1, v2, rezult) # 二、构建会话
"""
tf.Session(
target='', 给定连接的url,只有分布式运行的时候需要给定
graph=None, 调用哪张图,如果不给定,就调用默认图
config=None) 会话的配置协议。
"""
optimizer = tf.OptimizerOptions(
do_common_subexpression_elimination=True, # 表示开启公共执行子句的优化
do_constant_folding=True, # 设置为True表示开启常数折叠优化。
opt_level=0 # 设置为0表示开启上述2项优化,默认为0
)
graph_options = tf.GraphOptions(optimizer_options=optimizer)
with tf.Session(config=tf.ConfigProto(graph_options=graph_options)) as sess:
print(sess.run([rezult, v2])) def config_params1():
# todo 这里增加了使用tf.device指定运算 或者创建变量的设备。
with tf.Graph().as_default():
# 一、构建模型图
print('当前模型的默认图是:{}'.format(tf.get_default_graph()))
# 1、定义2个原始的输入的tensor对象
with tf.device('/GPU:0'):
# a 和 b 两个常量会在gpu:0 上进行创建。
a = tf.constant(
value=[1,2,3,4,5,6,3,4,3,45,5], dtype=tf.float32, shape=[3, 5], name='a'
)
b = tf.constant(
value=[3,3,3,3,3,3234,56,324,3,5], dtype=tf.float32, shape=[5, 3]
) # 2、用op add对上述两个常量分别加一个随机数
v1 = a + np.random.random_sample()
v2 = tf.add(b, tf.random_normal(shape=[], dtype=tf.float32, seed=43)) # 3、使用2个tensor矩阵相乘。
with tf.device('/GPU:1'):
rezult = tf.matmul(v1, v2)
print(a, b, v1, v2, rezult) # 二、构建会话
"""
tf.Session(
target='', 给定连接的url,只有分布式运行的时候需要给定
graph=None, 调用哪张图,如果不给定,就调用默认图
config=None) 会话的配置协议。
"""
with tf.Session(config=tf.ConfigProto(log_device_placement=True,
allow_soft_placement=True)) as sess:
print(sess.run([rezult, v2])) def config_params2():
# todo 学习gpu相关的参数。
with tf.Graph().as_default():
# 一、构建模型图
print('当前模型的默认图是:{}'.format(tf.get_default_graph()))
# 1、定义2个原始的输入的tensor对象
with tf.device('/GPU:0'):
# a 和 b 两个常量会在gpu:0 上进行创建。
a = tf.constant(
value=[1,2,3,4,5,6,3,4,3,45,5], dtype=tf.float32, shape=[3, 5], name='a'
)
b = tf.constant(
value=[3,3,3,3,3,3234,56,324,3,5], dtype=tf.float32, shape=[5, 3]
) # 2、用op add对上述两个常量分别加一个随机数
v1 = a + np.random.random_sample()
v2 = tf.add(b, tf.random_normal(shape=[], dtype=tf.float32, seed=43)) # 3、使用2个tensor矩阵相乘。
with tf.device('/GPU:1'):
rezult = tf.matmul(v1, v2)
print(a, b, v1, v2, rezult) # 二、构建会话
"""
gpu_options相关参数介绍
log_device_placement bool值 是否打印设备位置的日志文件
allow_soft_placement bool值 是否允许tf动态的使用cpu和gpu 默认为False
"""
gpu_options = tf.GraphOptions(
allow_growth=True, # 不预先分配使用整个gpu内存计算,而是从小到大按需增长
per_process_gpu_memory_fraction=0.8 # 值介于(0,1),限制使用该gpu设备内存的百分比。
)
with tf.Session(config=tf.ConfigProto(log_device_placement=True,
allow_soft_placement=True,
gpu_options=gpu_options)) as sess:
print(sess.run([rezult, v2])) if __name__ == '__main__':
config_params1()

02_02Session中Config的参数设置的更多相关文章

  1. Swift语言中为外部参数设置默认值可变参数常量参数变量参数输入输出参数

    Swift语言中为外部参数设置默认值可变参数常量参数变量参数输入输出参数 7.4.4  为外部参数设置默认值 开发者也可以对外部参数设置默认值.这时,调用的时候,也可以省略参数传递本文选自Swift1 ...

  2. 用WIN7系统IIS的提示:数据库连接出错,请检查Conn.asp文件中的数据库参数设置

    我用科讯的从4.0开始,去年开始很少用科讯做新站了,今天拿来做一下,结果悲剧了,数据库路径老是不对,百度一番又一番的,,最后终于给度娘解决了.分享出来给遇到同样的问题的人. 用WIN7系统IIS的注意 ...

  3. matplotlib 中的一些参数设置

    首先:在pycharm 中要使图显示出来,最后一定要加上 plt.show(),如: plt.bar(x, y) plt.show() 下面就是我使用 matplotlib  遇到的一些常用参数设置: ...

  4. 关于opcache中opcache.revalidate_freq参数设置测试报告

    1.测试目的: 测试出opcache中,opcache.revalidate_freq这个参数最适合的大小 说明:如果opcache.revalidate_freq参数越大,服务器单位时间能接收的请求 ...

  5. erlang otp中的socket参数设置

    抄自http://www.zackzod.me/2012/10/24/socket-options-in-erlang-otp.html Erlang的inet模块里提供了对Socket进行一系列参数 ...

  6. JDBC与Hibernate中SQL语句参数设置的顺序问题

    JDBC中:设置从1开始 例: Connection con = DriverManager.getConnection("jdbc:mysql://localhost/...", ...

  7. Mysql : L闪存卡linux中的内核参数设置

    将 Nytro WarpDrive 加速卡配置为文件系统 本节说明的操作使您可调整 Nytro WarpDrive 加速卡,增强使用 Oracle Linux with Unbreakable Ent ...

  8. js中setTimeout()时间参数设置为0的探讨

    起因源于一道前端笔试题: var fuc = [1,2,3]; for(var i in fuc){ setTimeout(function(){console.log(fuc[i])},0); co ...

  9. vins-mono中的imu参数设置

    na:加速度计的测量噪声 nw:陀螺仪的测量噪声 nba: randow walk noise随机游走噪声 nbw:randow walk noise随机游走噪声 ba:加速度计的偏差 bw:陀螺仪的 ...

随机推荐

  1. 【hadoop】MapReduce分布式计算框架原理

    PS:实操部分就省略了哈,准备最近好好看下理论这块,其实我是比较懒得哈!!! <?>MapReduce的概述 MapReduce是一种计算模型,进行大数据量的离线计算.MapReduce实 ...

  2. 迷你商城后台管理系统————stage2核心代码实现

    应用程序主函数接口 @SpringBootApplication(scanBasePackages = {"org.linlinjava.litemall.db", "o ...

  3. 关于RGBDSLAMV2学习、安装、调试过程

    Step1:https://github.com/felixendres/rgbdslam_v2/wiki/Instructions-for-Compiling-Rgbdslam-(V2)-on-a- ...

  4. git rebase 版本。。变基

    git rebase,顾名思义,就是重新定义(re)起点(base)的作用,即重新定义分支的版本库状态.要搞清楚这个东西,要先看看版本库状态切换的两种情况: 我们知道,在某个分支上,我们可以通过git ...

  5. svn: local unversioned, incoming file add upon update

    svn 文件冲突: D C 文件名 > local unversioned, incoming file add upon update svn revert 文件名 提示: 已恢复“文件名” ...

  6. [2019/05/17]解决springboot测试List接口时JSON传参异常

    报错信息,大致如下 c.c.c.c.a.BaseControllerExceptionHandler : 运行时异常: java.lang.IllegalStateException: No prim ...

  7. Ajax -02 -JQuery+Servlet -实现页面点击刷出表格数据

    demo功能分析 jquery 的js文件需要导入,json的三个文件需要导入,不然writeValueAsString 会转化成JsonArray(json 数组)失败 $("#mytbo ...

  8. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  9. C语言实验二——位运算

    问题 线性反馈移位寄存器 Linear feedback shift register(LFSR),是指给定前一状态,将该输出的线性函数再用作输入的移位寄存器.异或运算是最常见的单比特线性函数:对寄存 ...

  10. MySQL 是怎么保证数据一致性的(转载)

    在<写数据库同时发mq消息事务一致性的一种解决方案>一文的方案中把分布式事务巧妙转成了数据库事务.我们都知道关系型数据库事务能保证数据一致性,那数据库到底是怎么设计事务这一特性的呢? 一. ...