洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)
题目描述
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
N头牛排成一列1<=N<=5000。每头牛或者向前或者向后。为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的对应的最小K和最少次数M。
输入输出格式
输入格式:
Line 1: A single integer: N
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
输出格式:
Line 1: Two space-separated integers: K and M
输入输出样例
输入样例#1:
7
B
B
F
B
F
B
B
输出样例#1:
3 3
说明
For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)
这道题可以枚举每一种情况,然后O(n)判断是否可行。用all来表示当前的所有操作对这个点所产生的影响,并时刻更新。别忘了最后判断是否已经全部为F。
#include <bits/stdc++.h>
#define int long long
#define For(i, a, b) for (register int i = a; i <= b; i++)
using namespace std;
int n, a[5500], ans, rev[5500], all, tot, mn = 0x3f3f3f3f, mnat;
char ch;
bool ok(int x) {
memset(rev, 0, sizeof rev);
all = 0, tot = 0;
For(i, 1, n - x + 1) {
if ((a[i] + all) % 2 == 1) {
rev[i] = 1;
tot++;
}
all += rev[i];
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
if (tot > mn)
return 0;
For(i, n - x + 2, n) {
if ((a[i] + all) % 2 == 1)
return 0;
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
return 1;
}
signed main() {
cin >> n;
For(i, 1, n) {
cin >> ch;
a[i] = (ch == 'F' ? 0 : 1);
}
For(i, 1, n) {
if (ok(i) && tot < mn) {
mn = tot;
mnat = i;
}
}
cout << mnat << " " << mn << '\n';
return 0;
}
洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)的更多相关文章
- bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way
P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...
- [USACO07MAR]面对正确的方式Face The Right Way
题目概括 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing f ...
- 洛谷 P2882 [USACO07MAR]Face The Right Way G
题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...
- 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)
洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...
- 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…
P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...
- 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…
P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...
- 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)
P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...
- 洛谷P1360 [USACO07MAR]黄金阵容均衡题解
题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...
- 洛谷P2881 [USACO07MAR]排名的牛Ranking the Cows(bitset Floyd)
题意 题目链接 Sol 显然如果题目什么都不说的话需要\(\frac{n * (n - 1)}{2}\)个相对关系 然后求一下传递闭包减掉就行了 #include<bits/stdc++.h&g ...
随机推荐
- 在导入pytorch时libmkl_intel_lp64.so找不到
安装或者更新完pytorch后,运行不了,显示错误: (base) xu@xusu:~$ python Python (default, Dec , ::) [GCC ] :: Anaconda, I ...
- 【发现】visualvm是jdk自带的一款监控工具
visualvm是jdk自带的一款监控工具.它提供了一个可视界面,用于查看 Java 虚拟机上运行的基于 Java 技术的程序的详细信息.VisualVM 对 Java Development Kit ...
- spark 通过keytab 获取认证
/usr/local/spark--bin--cdh5.8.0/bin/spark-submit \ --keytab /home/jj/tl.keytab \ --principal vf@FC.C ...
- 016 Vuetify框架
1.Vuetify优点 官方网站:https://vuetifyjs.com/zh-Hans/ 原因如下: Vuetify几乎不需要任何CSS代码,而element-ui许多布局样式需要我们来编写 V ...
- cmdb知识总结
cmdb面试 1.paramiko模块的作用与原理 2.cmdb是什么 3.为什么要开发CMDB? 4.你们公司有多少台服务器?物理机?虚拟机? 5.你的CMDB是如何实现的? 6.CMDB都用到了哪 ...
- MATBLAB学习笔记----基础绘图
整理自台大生机系郭彦甫.MATLAB系列教程,吐血推荐看这个视频,非计算机专业也能看懂,全程干货 MATLAB图形来自于“数据”,MATLAB不能理解函数. MATLAB绘图原理: 1.在特定范围生成 ...
- docker 的Portainer和Dive
Portainer Portainer是Docker的图形化管理工具,提供状态显示面板.应用模板快速部署.容器镜像网络数据卷的基本操作(包括上传下载镜像,创建容器等操作).事件日志显示.容器控制台操作 ...
- 基于 DNS 动态发现方式部署 Etcd 集群
使用discovery的方式来搭建etcd集群方式有两种:etcd discovery和DNS discovery.在 「基于已有集群动态发现方式部署etcd集群」一文中讲解了etcd discove ...
- [Codeforces] Alex and a Rhombus
A. Alex and a Rhombus time limit per test 1 second memory limit per test 256 megabytes input standar ...
- Unity AsyncGPUReadback 接口测试
Unity2018新加入了该接口,可以做到异步RenderTexture->像素数据和异步的ComputeBuffer.GetData 那么写了几个例子来测试下. 1.RenderTexture ...