题目描述

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

N头牛排成一列1<=N<=5000。每头牛或者向前或者向后。为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的对应的最小K和最少次数M。

输入输出格式

输入格式:

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

输出格式:

Line 1: Two space-separated integers: K and M

输入输出样例

输入样例#1:

7

B

B

F

B

F

B

B

输出样例#1:

3 3

说明

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

这道题可以枚举每一种情况,然后O(n)判断是否可行。用all来表示当前的所有操作对这个点所产生的影响,并时刻更新。别忘了最后判断是否已经全部为F。

#include <bits/stdc++.h>
#define int long long
#define For(i, a, b) for (register int i = a; i <= b; i++)
using namespace std;
int n, a[5500], ans, rev[5500], all, tot, mn = 0x3f3f3f3f, mnat;
char ch;
bool ok(int x) {
memset(rev, 0, sizeof rev);
all = 0, tot = 0;
For(i, 1, n - x + 1) {
if ((a[i] + all) % 2 == 1) {
rev[i] = 1;
tot++;
}
all += rev[i];
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
if (tot > mn)
return 0;
For(i, n - x + 2, n) {
if ((a[i] + all) % 2 == 1)
return 0;
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
return 1;
}
signed main() {
cin >> n;
For(i, 1, n) {
cin >> ch;
a[i] = (ch == 'F' ? 0 : 1);
}
For(i, 1, n) {
if (ok(i) && tot < mn) {
mn = tot;
mnat = i;
}
}
cout << mnat << " " << mn << '\n';
return 0;
}

洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)的更多相关文章

  1. bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way

    P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...

  2. [USACO07MAR]面对正确的方式Face The Right Way

    题目概括 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing f ...

  3. 洛谷 P2882 [USACO07MAR]Face The Right Way G

    题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...

  4. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

  5. 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  6. 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  7. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

  8. 洛谷P1360 [USACO07MAR]黄金阵容均衡题解

    题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...

  9. 洛谷P2881 [USACO07MAR]排名的牛Ranking the Cows(bitset Floyd)

    题意 题目链接 Sol 显然如果题目什么都不说的话需要\(\frac{n * (n - 1)}{2}\)个相对关系 然后求一下传递闭包减掉就行了 #include<bits/stdc++.h&g ...

随机推荐

  1. HP Client Security Manager

    HP Client Security Manager - SP77916   操作系统:windows 10 64位   HP Client Security Manager - SP77916.ex ...

  2. Maven 教程(7)— Maven使用的最佳实践

    原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79544201 1.设置MAVEN_OPTS环境变量 通常需要设置MAVEN_OP ...

  3. Linux内核文档翻译——sysfs.txt

    sysfs - _The_ filesystem for exporting kernel objects. sysfs – 用于导出内核对象(kobject)的文件系统 Patrick Mochel ...

  4. java实现二维码的生成和解读

    Java利用QRCode.jar包实现二维码编码与解码   QRcode是日本人94年开发出来的.首先去QRCode的官网http://swetake.com/qrcode/java/qr_java. ...

  5. netcore3.0 webapi集成Swagger 5.0,Swagger使用

    Swagger使用 1.描述 Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 Web 服务. 作用: 1.接口的文档在线自动生成. 2.功能测试 本文转自 ...

  6. Oracle批量、大量Update方法总结

    一.业务场景: (1)主从两个表,主表Student,有字段id.name.sex,从表Boy,有字段id.name,主从表同一对象id相同 (2)从表Boy的name属性被业务修改,定时批量处理主表 ...

  7. 基于Mybatis-Plus实现自动化操作创建时间和修改时间

    引入 在实际开发中,总会避免不了操作数据库,而在数据库中每个表都会有create_time和update_time字段记录操作时间,我们在操作这两个时间的时候也可能会出现不一致的情况,或者说这两个字段 ...

  8. delphi 格式转换

    TO_CHAR 是把日期或数字转换为字符串 TO_DATE 是把字符串转换为数据库中得日期类型转换函数TO_NUMBER 将字符转化为数字 TO_CHAR 使用TO_CHAR函数处理数字 TO_CHA ...

  9. 自定义HTTP消息拦截

    /// <summary> /// HTTP消息拦截器 /// </summary> public class RequestHandler : DelegatingHandl ...

  10. WPF解决WindowsFormsHost背景透明

    项目案例:WPF使用WindowsFormsHost播放视频,视频上显示边框.字幕等特效: 难点问题 1.WindowsFormsHost不支持背景透明: 2.WPF Panel.ZIndex无效,W ...