题目描述

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

N头牛排成一列1<=N<=5000。每头牛或者向前或者向后。为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的对应的最小K和最少次数M。

输入输出格式

输入格式:

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

输出格式:

Line 1: Two space-separated integers: K and M

输入输出样例

输入样例#1:

7

B

B

F

B

F

B

B

输出样例#1:

3 3

说明

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

这道题可以枚举每一种情况,然后O(n)判断是否可行。用all来表示当前的所有操作对这个点所产生的影响,并时刻更新。别忘了最后判断是否已经全部为F。

#include <bits/stdc++.h>
#define int long long
#define For(i, a, b) for (register int i = a; i <= b; i++)
using namespace std;
int n, a[5500], ans, rev[5500], all, tot, mn = 0x3f3f3f3f, mnat;
char ch;
bool ok(int x) {
memset(rev, 0, sizeof rev);
all = 0, tot = 0;
For(i, 1, n - x + 1) {
if ((a[i] + all) % 2 == 1) {
rev[i] = 1;
tot++;
}
all += rev[i];
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
if (tot > mn)
return 0;
For(i, n - x + 2, n) {
if ((a[i] + all) % 2 == 1)
return 0;
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
return 1;
}
signed main() {
cin >> n;
For(i, 1, n) {
cin >> ch;
a[i] = (ch == 'F' ? 0 : 1);
}
For(i, 1, n) {
if (ok(i) && tot < mn) {
mn = tot;
mnat = i;
}
}
cout << mnat << " " << mn << '\n';
return 0;
}

洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)的更多相关文章

  1. bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way

    P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...

  2. [USACO07MAR]面对正确的方式Face The Right Way

    题目概括 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing f ...

  3. 洛谷 P2882 [USACO07MAR]Face The Right Way G

    题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...

  4. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

  5. 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  6. 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  7. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

  8. 洛谷P1360 [USACO07MAR]黄金阵容均衡题解

    题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...

  9. 洛谷P2881 [USACO07MAR]排名的牛Ranking the Cows(bitset Floyd)

    题意 题目链接 Sol 显然如果题目什么都不说的话需要\(\frac{n * (n - 1)}{2}\)个相对关系 然后求一下传递闭包减掉就行了 #include<bits/stdc++.h&g ...

随机推荐

  1. 在RedisTemplate中使用scan代替keys指令

    keys * 这个命令千万别在生产环境乱用.特别是数据庞大的情况下.因为Keys会引发Redis锁,并且增加Redis的CPU占用.很多公司的运维都是禁止了这个命令的 当需要扫描key,匹配出自己需要 ...

  2. 小程序接口无法传递session校验验证码

    今天在写接口的时候发现一个问题,我用apiaaz测试一切正常,但是从小程序接口请求验证码,一直验证失败. 最开始用的图形验证码,查阅了不少资料,最后怀疑是cookie的问题,解决无果,换成了短信验证码 ...

  3. drf面试题及总结

    drf面试题及总结 1.什么是前后端分离 2.什么是restful规范 3.模拟浏览器进行发送请求的工具 4.查找模板的顺序 5.什么是drf组件 6.drf组件提供的功能 7.drf继承过哪些视图类 ...

  4. k8s-Annotation(注解)

    k8s-Annotation(注解) Annotation与Label类似,也使用key/value键值对的形式进行定义. Label具有严格的命名规则,它定义的是Kubernetes对象的元数据(M ...

  5. webUI框架miniUI,easyUI,extJS,Bootstrap简介及简单部署

    本文为大家讲解的是webUI框架miniUI,easyUI,extJS,Bootstrap简介及简单部属,感兴趣的同学参考下 ExtJS是一种主要用于创建前端用户界面,是一个基本与后台技术无关的前端a ...

  6. jwt的简单使用

    目录 简介 java版本 golang版本 简介 使用jwt对数据进行存储加密,分为java和golang版本. java版本 maven配置 <dependency> <group ...

  7. C#项目 App.config 配置文件不同使用环境配置

    问题 部署项目时,常常需要根据不同的环境使用不同的配置文件.例如,在部署网站时可能希望禁用调试选项,并更改连接字符串以使其指向不同的数据库.在创建 Web 项目时,Visual Studio 自动生成 ...

  8. 实验代码:const* 和 const&

  9. 【转载】C#使用InsertRange方法往ArrayList集合指定位置插入另一个集合

    在C#的编程开发中,ArrayList集合是一个常用的非泛型类集合,ArrayList集合可存储多种数据类型的对象.在实际的开发过程中,我们可以使用InsertRange方法在ArrayList集合指 ...

  10. 学习笔记之Python 3

    学习笔记之Python 3 教程 https://www.cnblogs.com/pegasus923/p/7624416.html 学习笔记之X分钟速成Python3 https://www.cnb ...