题目描述

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

N头牛排成一列1<=N<=5000。每头牛或者向前或者向后。为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的对应的最小K和最少次数M。

输入输出格式

输入格式:

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

输出格式:

Line 1: Two space-separated integers: K and M

输入输出样例

输入样例#1:

7

B

B

F

B

F

B

B

输出样例#1:

3 3

说明

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

这道题可以枚举每一种情况,然后O(n)判断是否可行。用all来表示当前的所有操作对这个点所产生的影响,并时刻更新。别忘了最后判断是否已经全部为F。

#include <bits/stdc++.h>
#define int long long
#define For(i, a, b) for (register int i = a; i <= b; i++)
using namespace std;
int n, a[5500], ans, rev[5500], all, tot, mn = 0x3f3f3f3f, mnat;
char ch;
bool ok(int x) {
memset(rev, 0, sizeof rev);
all = 0, tot = 0;
For(i, 1, n - x + 1) {
if ((a[i] + all) % 2 == 1) {
rev[i] = 1;
tot++;
}
all += rev[i];
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
if (tot > mn)
return 0;
For(i, n - x + 2, n) {
if ((a[i] + all) % 2 == 1)
return 0;
if (i - x + 1 >= 1)
all -= rev[i - x + 1];
}
return 1;
}
signed main() {
cin >> n;
For(i, 1, n) {
cin >> ch;
a[i] = (ch == 'F' ? 0 : 1);
}
For(i, 1, n) {
if (ok(i) && tot < mn) {
mn = tot;
mnat = i;
}
}
cout << mnat << " " << mn << '\n';
return 0;
}

洛谷P2882 [USACO07MAR]面对正确的方式Face The Right Way(贪心)的更多相关文章

  1. bzoj1704 / P2882 [USACO07MAR]面对正确的方式Face The Right Way

    P2882 [USACO07MAR]面对正确的方式Face The Right Way $n<=5000$?枚举翻转长度,顺序模拟就ok了 对于每次翻转,我们可以利用差分的思想,再搞搞前缀和. ...

  2. [USACO07MAR]面对正确的方式Face The Right Way

    题目概括 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing f ...

  3. 洛谷 P2882 [USACO07MAR]Face The Right Way G

    题目传送门 题目描述 Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...

  4. 洛谷P1084 疫情控制(NOIP2012)(二分答案,贪心,树形DP)

    洛谷题目传送门 费了几个小时杠掉此题,如果不是那水水的数据的话,跟列队的难度真的是有得一比... 话说蒟蒻仔细翻了所有的题解,发现巨佬写的都是倍增,复杂度是\(O(n\log n\log nw)\)的 ...

  5. 洛谷P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  6. 洛谷 P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L…

    P1360 [USACO07MAR]黄金阵容均衡Gold Balanced L… 题目描述 Farmer John's N cows (1 ≤ N ≤ 100,000) share many simi ...

  7. 洛谷 P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维)

    P1360 [USACO07MAR]Gold Balanced Lineup G (前缀和+思维) 前言 题目链接 本题作为一道Stl练习题来说,还是非常不错的,解决的思维比较巧妙 算是一道不错的题 ...

  8. 洛谷P1360 [USACO07MAR]黄金阵容均衡题解

    题目 不得不说这个题非常毒瘤. 简化题意 这个题的暴力还是非常好想的,完全可以过\(50\%\)的数据.但是\(100\%\)就很难想了. 因为数据很大,所以我们需要用\(O(\sqrt n)\)的时 ...

  9. 洛谷P2881 [USACO07MAR]排名的牛Ranking the Cows(bitset Floyd)

    题意 题目链接 Sol 显然如果题目什么都不说的话需要\(\frac{n * (n - 1)}{2}\)个相对关系 然后求一下传递闭包减掉就行了 #include<bits/stdc++.h&g ...

随机推荐

  1. Shell脚本之八 函数

    一.函数定义 Linux shell 可以用户定义函数,然后在shell脚本中可以随便调用. shell中函数的定义格式如下: [ function ] funname [()] { action; ...

  2. 《Linux就该这么学》培训笔记_ch23_使用OpenLDAP部署目录服务

    <Linux就该这么学>培训笔记_ch23_使用OpenLDAP部署目录服务 文章主要内容: 了解目录服务 目录服务实验 配置LDAP服务端 配置LDAP客户端 了解目录服务 其实目录可以 ...

  3. Python 2 代码转 Python 3的一些转化

    Python 2 代码转 Python 3的一些转化 1.“print X” 更改为“print(X)” 2.xrange改为range 3.m.itervalues() 改为 m.values() ...

  4. SuperMemo

    SuperMemo Your friend, Jackson is invited to a TV show called SuperMemo in which the participant is ...

  5. Kafka部署篇

    目录 安装 下载与安装 配置 启停操作 验证 基本操作 创建topic 列出现有的topic 查看topic的详细信息 增加topic的partition数量 修改一个topic的副本数 删除一个to ...

  6. [转帖]智能合约和 DApp

    智能合约和 DApp https://www.jianshu.com/p/5e7df3902957 2018.10.08 19:50:41字数 3,403阅读 9,819 2017年11月份和2018 ...

  7. python 计算列表内容出现次数

    """python 计算列表内容出现次数""" #方法一: l = ['a','a','b','c','d','b','b','b'] te ...

  8. 搞清楚一道关于Integer的面试题【华为云技术分享】

    请看题1: public class IntegerDemo { public static void main(String[] args) { Integer a = ; Integer b = ...

  9. Dubbo面试踩坑

    1.Dubbo支持哪些协议,每种协议的应用场景,优缺点? dubbo: 单一长连接和NIO异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者.传输协议TCP,异步,Hessian序列化: ...

  10. 探索etcd,Zookeeper和Consul一致键值数据存储的性能

    这篇博文是探索三个分布式.一致性键值数据存储软件性能的系列文章中的第一篇:etcd.Zookeeper和Consul,由etcd团队所写,可以让我们全面地了解如何评估三个分布式一致存储软件的性能.翻译 ...