Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
属性 | 说明 |
---|---|
ndarray.ndim | 秩,即轴的数量或维度的数量 |
ndarray.shape | 数组的维度,对于矩阵,n 行 m 列 |
ndarray.size | 数组元素的总个数,相当于 .shape 中 n*m 的值 |
ndarray.dtype | ndarray 对象的元素类型 |
ndarray.itemsize | ndarray 对象中每个元素的大小,以字节为单位 |
ndarray.flags | ndarray 对象的内存信息 |
ndarray.real | ndarray元素的实部 |
ndarray.imag | ndarray 元素的虚部 |
ndarray.data | 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 |
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
import numpy as np a = np.arange(24)
b = a.reshape(2, 4, 3)print(a.ndim,b.ndim)
输出结果为:
1 3
ndarray.shape
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
import numpy as np a = np.array([[1,2,3],[4,5,6]])
print (a.shape)
输出结果为:
(2, 3)
ndarray.shape 也可以用于调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)
输出结果为:
[[1 2]
[3 4]
[5 6]]
NumPy 也提供了 reshape 函数来调整数组大小
import numpy as np a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)
输出结果为:
[[1, 2]
[3, 4]
[5, 6]]
ndarray.itemsize
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
例如,一个元素类型为 float64 的数组 itemsiz 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节);一个元素类型为 complex32 的数组 item 属性为 4(32/8)。
import numpy as np # 数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize) # 数组的 dtype 现在为 float64(八个字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (y.itemsize)
输出结果为:
1
8
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
属性 | 描述 |
---|---|
C_CONTIGUOUS (C) | 数据是在一个单一的C风格的连续段中 |
F_CONTIGUOUS (F) | 数据是在一个单一的Fortran风格的连续段中 |
OWNDATA (O) | 数组拥有它所使用的内存或从另一个对象中借用它 |
WRITEABLE (W) | 数据区域可以被写入,将该值设置为 False,则数据为只读 |
ALIGNED (A) | 数据和所有元素都适当地对齐到硬件上 |
UPDATEIFCOPY (U) | 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 |
import numpy as np x = np.array([1,2,3,4,5])
print (x.flags)
输出结果为:
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
Numpy | 04 数组属性的更多相关文章
- numpy之数组属性与方法
# coding=utf-8import numpy as npimport random # nan是一个float类型 ,not a num不是一个数字;inf,infinite 无穷 # 轴的概 ...
- numpy库数组属性查看:类型、尺寸、形状、维度
import numpy as np q = np.array([1,2,3,4],dtype=np.complex128) print("数据类型",type(q)) ...
- Numpy 数组属性
Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...
- numpy数组属性查看及断言
numpy数组属性查看:类型.尺寸.形状.维度 import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) ...
- NumPy数组属性
NumPy - 数组属性 这一章中,我们会讨论 NumPy 的多种数组属性. ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小. 示例 1 import n ...
- 3.NumPy - 数组属性
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.a ...
- 3、NumPy 数组属性
1.秩.维度 NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions ...
- Lesson4——NumPy 数组属性
NumPy 教程目录 NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axi ...
- python numpy基础 数组和矢量计算
在python 中有时候我们用数组操作数据可以极大的提升数据的处理效率, 类似于R的向量化操作,是的数据的操作趋于简单化,在python 中是使用numpy模块可以进行数组和矢量计算. 下面来看下简单 ...
随机推荐
- SQL Server 中获取一个表的字段信息
直接贴代码了: SELECT sysobjects.name AS TableName, syscolumns.Id AS TableId, syscolumns.name AS DbColumnNa ...
- git在使用push指令的时候产生的错误
一.问题我们在使用git指令的时候往往会出现如下错误. $ git push -u origin master To https://github.com/pzq7025/ss-fly.git ! [ ...
- IEDA 启动main报 stock
1 . 启动资源管理器关闭java进程,重新启动还是没有解决问题 2.看网上说jdk版本1.8换成1.7 启动成功,已解决,不知道为为什么.
- 当Windows操作系统关机时,不会执行Windows Service的OnStop方法(转载)
Windows Service OnStop when computer shutdown 问: I'm writing a Windows Service in C#. I want to take ...
- C#读写设置修改调整UVC摄像头画面-增益
有时,我们需要在C#代码中对摄像头的增益进行读和写,并立即生效.如何实现呢? 建立基于SharpCamera的项目 首先,请根据之前的一篇博文 点击这里 中的说明,建立基于SharpCamera的摄像 ...
- WebAPI中路由参数中包含字符-点“.”
请求url都是类似:/api/area/province.list 我们默认建立的Asp Net WebApi 服务时,如果请求url包含“.”,则返回404错误. 解决办法:需要在web.confi ...
- python json库
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写. 1.json库的使用 使用 JSON 函数需要导入 json 库:import jso ...
- 【转】用Python做股市量化策略投资数据分析
金融量化分析介绍 本文摘要; 金融量化分析介绍 1.什么是金融量化分析 2.金融量化分析可以干什么 3.为什么将python运用于金融 4.常用库简介 1.什么是金融量化分析 从标题中我们可以 ...
- Ext.urlEncode与Ext.urlDecode
Ext.urlEncode与Ext.urlDecode: 用于js对象和查询字符串之间的相互转换 Ext.urlEncode例子如下: /* Ext.urlEncode( object, [recur ...
- android中listview滑动卡顿的原因
导致Android界面滑动卡顿主要有两个原因: 1.UI线程(main)有耗时操作 2.视图渲染时间过长,导致卡顿 http://www.tuicool.com/articles/fm2IFfU