首先,数据加载

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,期中read_csv和read_table这两个使用最多。

1、删除重复元素

使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True。

- keep参数:指定保留哪一重复的行数据
- True 重复的行
  • 创建具有重复元素行的DataFrame
from pandas import Series,DataFrame
import numpy as np
import pandas as pd #创建一个df
np.random.seed(10)
df = DataFrame(data=np.random.randint(0,100,size=(3,5)),index=['A','B','C'],columns=['a','b','c','d','e'])
df
# a b c d e
A 9 15 64 28 89
B 93 29 8 73 0
C 40 36 16 11 54 df.loc['B'] = ['','','','','']
df.loc['C'] = ['','','','','']
df
# a b c d e
A 9 15 64 28 89
B 22 22 22 22 22
C 22 22 22 22 22
  • 使用duplicated查看所有重复元素行

使用drop_duplicates()函数删除重复的行

  • drop_duplicates(keep='first/last'/False)

2. 映射:指定替换

1) replace()函数:替换元素

 

使用replace()函数,对values进行映射操作

Series替换操作

  • 单值替换

    • 普通替换
    • 字典替换(推荐)
  • 多值替换
    • 列表替换
    • 字典替换(推荐)
  • 参数
    • to_replace:被替换的元素

单值普通替换

eplace参数说明:

  • method:对指定的值使用相邻的值填充替换
  • limit:设定填充次数

DataFrame替换操作

  • 单值替换

    • 普通替换: 替换所有符合要求的元素:to_replace=15,value='e'
    • 按列指定单值替换: to_replace={列标签:替换值} value='value'
  • 多值替换

    • 列表替换: to_replace=[] value=[]
    • 字典替换(推荐) to_replace={to_replace:value,to_replace:value}

2) map()函数:新建一列 , map函数并不是df的方法,而是series的方法

  • map是Series的一个函数
  • map()可以映射新一列数据
  • map()中可以使用lambd表达式
  • map()中可以使用方法,可以是自定义的方法

    eg:map({to_replace:value})

  • 注意 map()中不能使用sum之类的函数,for循环
 

注意:并不是任何形式的函数都可以作为map的参数。只有当一个函数具有一个参数且有返回值,那么该函数才可以作为map的参数。

3. 使用聚合操作对数据异常值检测和过滤

4. 排序

使用.take()函数排序

- take()函数接受一个索引列表,用数字表示,使得df根据列表中索引的顺序进行排序
- eg:df.take([1,3,4,2,5])

可以借助np.random.permutation()函数随机排序

随机抽样

当DataFrame规模足够大时,直接使用np.random.permutation(x)函数,就配合take()函数实现随机抽样

5. 数据分类处理

数据聚合是数据处理的最后一步,通常是要使每一个数组生成一个单一的数值。

数据分类处理:

  • 分组:先把数据分为几组
  • 用函数处理:为不同组的数据应用不同的函数以转换数据
  • 合并:把不同组得到的结果合并起来

数据分类处理的核心:

 - groupby()函数
- groups属性查看分组情况
- eg: df.groupby(by='item').groups

分组

pandas数据处理的更多相关文章

  1. python pandas 数据处理

    pandas是基于numpy包扩展而来的,因而numpy的绝大多数方法在pandas中都能适用. pandas中我们要熟悉两个数据结构Series 和DataFrame Series是类似于数组的对象 ...

  2. Pandas数据处理实战:福布斯全球上市企业排行榜数据整理

    手头现在有一份福布斯2016年全球上市企业2000强排行榜的数据,但原始数据并不规范,需要处理后才能进一步使用. 本文通过实例操作来介绍用pandas进行数据整理. 照例先说下我的运行环境,如下: w ...

  3. 数据分析入门——pandas数据处理

    1,处理重复数据 使用duplicated检测重复的行,返回一个series,如果不是第一次出现,也就是有重复行的时候,则为True: 对应的,可以使用drop_duplicates来删除重复的行: ...

  4. pandas数据处理基础——筛选指定行或者指定列的数据

    pandas主要的两个数据结构是:series(相当于一行或一列数据机构)和DataFrame(相当于多行多列的一个表格数据机构). 本文为了方便理解会与excel或者sql操作行或列来进行联想类比 ...

  5. Python———pandas数据处理

    pandas模块 更高级的数据分析工具基于NumPy构建包含Series和DataFrame两种数据结构,以及相应方法 调用方法:from pandas import  Series, DataFra ...

  6. Pandas数据处理+Matplotlib绘图案例

    利用pandas对数据进行预处理然后再使用matplotlib对处理后的数据进行数据可视化是数据分析中常用的方法. 第一组例子(星巴克咖啡店) 假如我们现在有这样一组数据:星巴克在全球的咖啡店信息,如 ...

  7. pandas数据处理攻略

    首先熟悉numpy随机n维数组的生成方法(只列出常用的函数): np.random.random([3, 4]) #生成shape为[3, 4]的随机数组,随机数范围[0.0, 1.0) np.ran ...

  8. pandas 数据处理

    1. 查看数值数据的整体分布情况 datafram.describe() 输出: agecount 1463.000000mean 22.948052std 8.385384min 13.000000 ...

  9. Pandas数据处理 学习

    pandas是在numpy的基础上建立的新程序库,提供了一种高效的DataFrame数据结构. DataFrame本质上是一种带行标签和列标签.支持相同数据类型和缺失值的多维数组. 先看版本信息: p ...

随机推荐

  1. Node.js 实现第一个应用以及HTTP模块和URL模块应用

    /* 实现一个应用,同时还实现了整个 HTTP 服务器. * */ //1.引入http模块 var http=require('http'); //2.用http模块创建服务 /* req获取url ...

  2. how-does-mysql-replication-really-work/ what-causes-replication-lag

    https://www.cnblogs.com/kevingrace/p/6274073.html https://www.cnblogs.com/kevingrace/p/6261091.html ...

  3. 数据分析入门——pandas之合并函数merge

    merge有点类似SQL中的join,可以将不同数据集按照某些字段进行合并,得到新的数据集  1.参数一览表: 2.一对一连接:默认情况下,会按照相同字段的进行连接 例如有相同字段emp的两个df,m ...

  4. k8s记录-ubuntu安装docker

    sudo apt-get purge docker-ce sudo rm -rf /var/lib/dockerdocker-ce:https://download.docker.com/linux/ ...

  5. [LeetCode] 752. Open the Lock 开锁

    You have a lock in front of you with 4 circular wheels. Each wheel has 10 slots: '0', '1', '2', '3', ...

  6. Jenkins - 插件管理

    1 - Jenkins插件 Jenkins通过插件来增强功能,可以集成不同的构建工具.云平台.分析和发布工具等,从而满足不同组织或用户的需求. Jenkins 提供了不同的的方法来安装插件(需要不同级 ...

  7. python3黑帽子渗透笔记第二章--网络基础

    1 先来看看不可少的socket模块 (1)tcp_client.py 在渗透测试过程中,创建一个tcp客户端连接服务,发送垃圾数据,进行模糊测试等. (2)udp_client.py 2 nc工具的 ...

  8. Mac和window实现双向数据传输

    Mac和window实现双向数据传输 总体步骤:第一步,在window上设置开发访问权限,然后选择要共享的磁盘或者文件夹第二步,在Mac上使用 Finder里面的网络,command+K,选择一个IP ...

  9. linux awk的用法

    linux awk的用法 <pre>[root@iZ23uewresmZ ~]# cat /home/ceshis.txtb 12 42 30 b 03 43 25 a 08 10 16 ...

  10. Spring中的@ImportResource

    简介 这个注解很简单,就是导入spring的xml配置文件 直接来看spring官方文档: In applications where @Configuration classes are the p ...