CF241E Flights 题解
做了一下这道题,突然发现自己忘了差分约束,赶紧复习一下。
设当前有n个变量 a1,a2,...,an ,有若干组限制形如 ai≤aj+k (其中k为常数),则由点j向点i连一条边权为k的边,再从某一确定的变量出发跑最短路(如若a1=0,则设dis1=0,从点1出发跑最短路),得到的disi即为ai的最大值。类似的,若把上面的小于等于改成大于等于,跑最长路,就可以得到每个点的最小值。若跑最短路时出现了负环(最长路正环),则说明无解。
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 200007
int h1[N],pre[N],to[N],num,dis[N],h2[N],h3[N],w[N],f[N],n,m;
int id[N],ans[N];
bool tag1[N],tag2[N],tag[N],vis[N];
queue<int> q;
void add1(int x,int y,int z)
{
num++;pre[num]=h1[x];h1[x]=num;to[num]=y;id[num]=z;
}
void add2(int x,int y)
{
num++;pre[num]=h2[x];h2[x]=num;to[num]=y;
}
void add3(int x,int y,int z)
{
num++;pre[num]=h3[x];h3[x]=num;to[num]=y;w[num]=z;
}
bool spfa(int s)
{
int v,i,u;
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s]=;f[s]=;
q.push(s);
while(!q.empty())
{
v=q.front();q.pop();
vis[v]=false;
for(i=h3[v];i;i=pre[i])
{
u=to[i];
if(dis[v]+w[i]<dis[u])
{
dis[u]=dis[v]+w[i];
f[u]=f[v]+;
if(f[u]>=n+)return false;
if(!vis[u])
{
q.push(u);
vis[u]=true;
}
}
}
}
return true;
}
void dfs1(int v)
{
int i,u;
tag1[v]=true;
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag1[u])continue;
dfs1(u);
}
}
void dfs2(int v)
{
int i,u;
tag2[v]=true;
for(i=h2[v];i;i=pre[i])
{
u=to[i];
if(tag2[u])continue;
dfs2(u);
}
}
int main()
{
int i,x,y,j,u,v;
scanf("%d%d",&n,&m);
for(i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add1(x,y,i),add2(y,x);
}
dfs1(),dfs2(n);
for(i=;i<=n;i++)
if(tag1[i]&&tag2[i])
tag[i]=true;
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[v]&&tag[u])
{
add3(v,u,-);
add3(u,v,);
}
}
if(!spfa(n))printf("No\n");
else
{
printf("Yes\n");
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[u]&&tag[v])ans[id[i]]=dis[v]-dis[u];
else ans[id[i]]=;
}
for(i=;i<=m;i++)
printf("%d\n",ans[i]);
}
return ;
}
CF241E Flights 题解的更多相关文章
- [CF241E]Flights
[CF241E]Flights 题目大意: 给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从 ...
- 题解 CF241E Flights
题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条边的 \(\texttt{DAG}\) ,给每条边设定边权为 \(1\) 或者 \(2\) ,使得 \(1\to n\) 的每条路径长度 ...
- CodeForces - 241E Flights 题解
题目大意: 有一个有向无环图,n个点m条边,所有边权为1或2,求一组使所有从1到n的路径长度相同的边权的方案. 思路: 设从1到i的最短路为dist[i],若有一条从x到y的边,则1<=dist ...
- CF241E Flights 差分约束
传送门 差分约束永远是Itst最烂的图论知识点没有之一qwq 先用dfs把在\(1\)到\(N\)的路径上的所有点都拿出来,其他的点和边状态任意都不会影响答案. 然后考虑设\(dis_i\)表示从\( ...
- 【CF241E】Flights(差分约束)
[CF241E]Flights(差分约束) 题面 CF 有\(n\)个点\(m\)条边,要求给每条边赋一个\(1\)或\(2\)的边权,判断能否使得每一条\(1\)到\(n\)的路径的权值和都相等,如 ...
- 【CF241E】Flights
[CF241E]Flights 题面 洛谷 题解 对于原来的图,如果一条边不出现在\(1\)到\(n\)的路径上面,直接\(ban\)掉即可. 那么考虑一条边\(u\rightarrow v\),一定 ...
- 「CF241E」Flights
传送门 Luogu 解题思路 首先对于所有不属于任何一条路径上的边,它的权值是任意的. 对于所有在路径上的边 \((u,v)\) 满足 \(1\le dis_v-dis_u\le2\) 差分约束即可. ...
- 题解 CF576D 【Flights for Regular Customers】
对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...
- Codeforces Round #384 (Div. 2) A. Vladik and flights 水题
A. Vladik and flights 题目链接 http://codeforces.com/contest/743/problem/A 题面 Vladik is a competitive pr ...
随机推荐
- typescript nodejs 依赖注入实现
依赖注入通常也是我们所说的ioc模式,今天分享的是用typescript语言实现的ioc模式,这边用到的主要组件是 reflect-metadata 这个组件可以获取或者设置元数据信息,它的作用是拿到 ...
- C# 进程 与 线程
C#多线程和线程池1.0.线程的和进程的关系以及优缺点windows系统是一个多线程的操作系统.一个程序至少有一个进程,一个进程至少有一个线程.进程是线程的容器,一个C#客户端程序开始于一个单独的线程 ...
- Mybatis源码解析(二) —— 加载 Configuration
Mybatis源码解析(二) -- 加载 Configuration 正如上文所看到的 Configuration 对象保存了所有Mybatis的配置信息,也就是说mybatis-config. ...
- CentsOS原生RabbitMQ安装过程
版本依赖问题 RabbitMQ安装时与Erlang的版本一定要保持以下的对应关系,否则会引发无法启动的问题 安装Erlang 下载Erlang依赖 1 wget http://erlang.org/d ...
- iOS - 架构的认识过程,悬崖勒马。
16年的时候写过一篇代码讲解的,依旧是这三种架构,现在20年将近了,看到好的文章,是否增加新的认识. 16年链接 iOS - 架构模式 - 解密 MVC.MVP.MVVM.VIPER架构 新项目选择架 ...
- Linux应急响应姿势浅谈
一.前记 无论是甲方还是乙方的同学,应急响应可能都是家常便饭,你可能经常收到如下反馈: 运维同事 --> 服务器上存在可疑进程,系统资源占用高: 网络同事 --> 监控发现某台服务器对外大 ...
- centos安装redis并且加入开机启动
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_41114593/articl ...
- Echarts实现Excel趋势线和R平方计算思路
测试数据 [19550, 7.1 ],[22498, 8.44 ],[25675, 9.56 ],[27701, 10.77],[29747, 11.5 ],[32800, 12.27],[34822 ...
- idea操作maven时控制台中文显示乱码/maven项目启动方式
在idea中通过maven启动项目时,在前台显示数据库信息,没有中文乱码问题,在控制台中mybatis显示数据库的信息,中文显示乱码. 在程序中用 System.out.println 输出中文的时候 ...
- 利用 Docker 搭建 IPFS 私有网络
利用 Docker 搭建 IPFS 私有网络 本文原始地址:https://sitoi.cn/posts/40630.html 下载项目 项目地址:https://github.com/Sitoi/p ...