题目

做了一下这道题,突然发现自己忘了差分约束,赶紧复习一下。

设当前有n个变量 a1,a2,...,an ,有若干组限制形如 ai≤aj+k (其中k为常数),则由点j向点i连一条边权为k的边,再从某一确定的变量出发跑最短路(如若a1=0,则设dis1=0,从点1出发跑最短路),得到的disi即为ai的最大值。类似的,若把上面的小于等于改成大于等于,跑最长路,就可以得到每个点的最小值。若跑最短路时出现了负环(最长路正环),则说明无解。

代码:

     #include<bits/stdc++.h>
using namespace std;
#define N 200007
int h1[N],pre[N],to[N],num,dis[N],h2[N],h3[N],w[N],f[N],n,m;
int id[N],ans[N];
bool tag1[N],tag2[N],tag[N],vis[N];
queue<int> q;
void add1(int x,int y,int z)
{
num++;pre[num]=h1[x];h1[x]=num;to[num]=y;id[num]=z;
}
void add2(int x,int y)
{
num++;pre[num]=h2[x];h2[x]=num;to[num]=y;
}
void add3(int x,int y,int z)
{
num++;pre[num]=h3[x];h3[x]=num;to[num]=y;w[num]=z;
}
bool spfa(int s)
{
int v,i,u;
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s]=;f[s]=;
q.push(s);
while(!q.empty())
{
v=q.front();q.pop();
vis[v]=false;
for(i=h3[v];i;i=pre[i])
{
u=to[i];
if(dis[v]+w[i]<dis[u])
{
dis[u]=dis[v]+w[i];
f[u]=f[v]+;
if(f[u]>=n+)return false;
if(!vis[u])
{
q.push(u);
vis[u]=true;
}
}
}
}
return true;
}
void dfs1(int v)
{
int i,u;
tag1[v]=true;
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag1[u])continue;
dfs1(u);
}
}
void dfs2(int v)
{
int i,u;
tag2[v]=true;
for(i=h2[v];i;i=pre[i])
{
u=to[i];
if(tag2[u])continue;
dfs2(u);
}
}
int main()
{
int i,x,y,j,u,v;
scanf("%d%d",&n,&m);
for(i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
add1(x,y,i),add2(y,x);
}
dfs1(),dfs2(n);
for(i=;i<=n;i++)
if(tag1[i]&&tag2[i])
tag[i]=true;
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[v]&&tag[u])
{
add3(v,u,-);
add3(u,v,);
}
}
if(!spfa(n))printf("No\n");
else
{
printf("Yes\n");
for(v=;v<=n;v++)
for(i=h1[v];i;i=pre[i])
{
u=to[i];
if(tag[u]&&tag[v])ans[id[i]]=dis[v]-dis[u];
else ans[id[i]]=;
}
for(i=;i<=m;i++)
printf("%d\n",ans[i]);
}
return ;
}

CF241E Flights 题解的更多相关文章

  1. [CF241E]Flights

    [CF241E]Flights 题目大意: 给一张\(n(n\le1000)\)个点\(m(m\le5000)\)条边的DAG,确定每条边的边权\(w_i(w_i\in\{1,2\})\),使得所有从 ...

  2. 题解 CF241E Flights

    题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条边的 \(\texttt{DAG}\) ,给每条边设定边权为 \(1\) 或者 \(2\) ,使得 \(1\to n\) 的每条路径长度 ...

  3. CodeForces - 241E Flights 题解

    题目大意: 有一个有向无环图,n个点m条边,所有边权为1或2,求一组使所有从1到n的路径长度相同的边权的方案. 思路: 设从1到i的最短路为dist[i],若有一条从x到y的边,则1<=dist ...

  4. CF241E Flights 差分约束

    传送门 差分约束永远是Itst最烂的图论知识点没有之一qwq 先用dfs把在\(1\)到\(N\)的路径上的所有点都拿出来,其他的点和边状态任意都不会影响答案. 然后考虑设\(dis_i\)表示从\( ...

  5. 【CF241E】Flights(差分约束)

    [CF241E]Flights(差分约束) 题面 CF 有\(n\)个点\(m\)条边,要求给每条边赋一个\(1\)或\(2\)的边权,判断能否使得每一条\(1\)到\(n\)的路径的权值和都相等,如 ...

  6. 【CF241E】Flights

    [CF241E]Flights 题面 洛谷 题解 对于原来的图,如果一条边不出现在\(1\)到\(n\)的路径上面,直接\(ban\)掉即可. 那么考虑一条边\(u\rightarrow v\),一定 ...

  7. 「CF241E」Flights

    传送门 Luogu 解题思路 首先对于所有不属于任何一条路径上的边,它的权值是任意的. 对于所有在路径上的边 \((u,v)\) 满足 \(1\le dis_v-dis_u\le2\) 差分约束即可. ...

  8. 题解 CF576D 【Flights for Regular Customers】

    对每条边来说,可以走这条边的限制解除是按\(d\)的顺序,所以先对每条边按\(d\)排序. 然后考虑每两条边之间的处理,用一个矩阵表示当前走\(d\)步是否可以从一个点到另一个点,称其为状态矩阵,用另 ...

  9. Codeforces Round #384 (Div. 2) A. Vladik and flights 水题

    A. Vladik and flights 题目链接 http://codeforces.com/contest/743/problem/A 题面 Vladik is a competitive pr ...

随机推荐

  1. java自定义异常和throw、throws的使用

    一.自定义异常类 我们知道所有的异常都是Exception,所以我们需要自定义异常只需要继承那个Exception类就可以了.下面我们自定义一个异常类,代码如下: /** * 自定义异常, */ // ...

  2. SQL根据指定节点ID获取所有父级节点和子级节点

    --根据指定节点ID获取所有子节点-- WITH TEMP AS ( SELECT * FROM table_name WHERE Id=' --表的主键ID UNION ALL SELECT T0. ...

  3. 【3.1】学习C++之再逢const

    随着学习的深入,就会发现曾经学的const还有更深入的用法,现在就对const的未总结的用法进行总结. 本文就是针对const在类中的情况进行的总结. 有时我们会遇到下面这种将类的成员变量用const ...

  4. selenium自学笔记---ecshop购买脚本 xpath定位元素(下拉框,单选框)

    本机环境:xamppv3.2.1+ecshop3.0  1.元素定位写对,却一直报错,发现是页面元素加载的太慢,所以加上延时 from selenium import webdriverimport ...

  5. 冬虫夏草winterwormsummerherb英语

    “中药之王”--冬虫夏草WinterwormSummerherb King of Chinese medicine --WinterwormSummerherb “冬天是虫,夏天是草,冬虫夏草是个宝. ...

  6. pandas 之 数据清洗-缺失值

    Abstract During the course fo doing data analysis and modeling, a significant amount of time is spen ...

  7. jieba分词及词频统计小项目

    import pandas as pd import jieba import jieba.analyse from collections import Counter,OrderedDict ji ...

  8. 202. 快乐数.Set去重作用实际作用

    编写一个算法来判断一个数是不是“快乐数”. 一个“快乐数”定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是无限循环但始终变不到 1.如 ...

  9. input事件在进行模糊搜索时,用到的即时监测input的值变化的方法(即时搜索的input和propertychange方法)

    做搜索功能的时候,经常遇到输入框检查的需求,最常见的是即时搜索,今天好好小结一下. 即时搜索的方案: (1)change事件    触发事件必须满足两个条件: a)当前对象属性改变,并且是由键盘或鼠标 ...

  10. Zabbix4.0如何添加监控信息

    二.添加监控信息 监控Windows主机: 首先需要在Windows主机上安装好Zabbix agent,安装方法,见另一篇博客,https://www.cnblogs.com/opsprobe/p/ ...