对A1135这题有心里阴影了,今天终于拿下AC。学习自柳神博客:https://www.liuchuo.net/archives/4099

首先读题很关键:

There is a kind of balanced binary search tree named red-black tree in the data structure………………

红黑树首先应该是一棵BST树,不然从何谈起维护二分查找结构?

所以第一步就应该根据先序遍历以及BST树的特性来判断是否是一棵BST树,然后根据这两个条件生成树形链式结构。


柳神博客中给出的方法是生成后序遍历然后判断size是否与先序遍历的长度相等。笔者认为生成一个新的先序遍历然后判断长度也可以。

void getPost(int root,int end){//create a BST by pre order and BST's property
if(root>end) return;
int i=root+,j=end;
while(i<=end && pre[root]>pre[i]) i++;
while(j>=root+ && pre[root]<pre[j]) j--;
if(i!=j+) return;
getPost(root+,j);
getPost(i,end);
post.push_back(pre[root]);
}

以上是生成后序遍历的代码。代码逻辑:

7 2 1 5 4 11 8 14 16

j↑ ↑i

让i->遍历[root + 1 , 大于root的数],j<-遍历[小于root的数 , end]

然后二者相互错开,建立新的递归关系。

特殊边界条件:

  \

   2

     \

      3

这个结构符合BST树的定义,先序遍历是 123。

第一轮:

1 2 3

j i

第二轮:

2 3

j i

第三轮:

ij


然后再谈到递归判断。两个递归判断代码:

int getNum(Node* node){
if(!node) return ;
int l=getNum(node->l);
int r=getNum(node->r);
int m=max(l,r);
if(!node->isR) m++;
return m;
}
bool judge1(Node* node){//every path to leaves have same black
if(!node) return true;
if(getNum(node->l)!=getNum(node->r)) return false;
return judge1(node->l) && judge1(node->r);
}
bool judge2(Node* node){//the node is red , the both leaves is black
if(!node) return true;
if(node->isR){
if(node->l && node->l->isR) return false;
if(node->r && node->r->isR) return false;
}
return judge2(node->l) && judge2(node->r);
}

完整代码:

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 10000
#define MAX 0x06FFFFFF
#define V vector<int> using namespace std; V post;
V pre;
typedef struct Node{
int d=;
bool isR=true;
struct Node* l=NULL;
struct Node* r=NULL;
Node(int D,int I){
d=D;isR=I;
l=NULL;r=NULL;
}
}Node; Node *root=NULL; void getPost(int root,int end);
Node* bst_insert(Node* p,int d);
bool judge1(Node* node);
bool judge2(Node* node); int main() {
freopen("d:/input/A1135/1.txt","r",stdin);
int N,M,i;
scanf("%d",&N);
while(N-->){
scanf("%d",&M);
pre.resize(M);
post.clear();
root=NULL;
FF(i,M){
int t;
scanf("%d",&t);
pre[i]=abs(t);
root=bst_insert(root,t);
}
getPost(,M-);
if(post.size()!=M){
OL("No");continue;
}
if(root->isR){
OL("No");continue;
}
if(judge1(root) && judge2(root))
OL("Yes");
else OL("No");
}
// OL("OK");
return ;
} void getPost(int root,int end){//create a BST by pre order and BST's property
if(root>end) return;
int i=root+,j=end;
while(i<=end && pre[root]>pre[i]) i++;
while(j>=root+ && pre[root]<pre[j]) j--;
if(i!=j+) return;
getPost(root+,j);
getPost(i,end);
post.push_back(pre[root]);
} Node* bst_insert(Node* p,int d){
Node* node=new Node(abs(d),d<);//if d < 0 , d is red
if(!p){//node is null
return node;
}else{
int v=abs(d);
if(v>p->d){//r
if(p->r){
p->r=bst_insert(p->r,d);
}else{
p->r=node;
}
}else{
if(p->l){
p->l=bst_insert(p->l,d);
}else{
p->l=node;
}
}
}
return p;
} int getNum(Node* node){
if(!node) return ;
int l=getNum(node->l);
int r=getNum(node->r);
int m=max(l,r);
if(!node->isR) m++;
return m;
} bool judge1(Node* node){//every path to leaves have same black
if(!node) return true;
if(getNum(node->l)!=getNum(node->r)) return false;
return judge1(node->l) && judge1(node->r);
} bool judge2(Node* node){//the node is red , the both leaves is black
if(!node) return true;
if(node->isR){
if(node->l && node->l->isR) return false;
if(node->r && node->r->isR) return false;
}
return judge2(node->l) && judge2(node->r);
}

A1135 | 红黑树判断:审题、根据“先序遍历”和“BST树”的条件生成后序遍历、递归判断的更多相关文章

  1. PAT甲题题解-1119. Pre- and Post-order Traversals (30)-(根据前序、后序求中序)

    (先说一句,题目还不错,很值得动手思考并且去实现.) 题意:根据前序遍历和后序遍历建树,输出中序遍历序列,序列可能不唯一,输出其中一个即可. 已知前序遍历和后序遍历序列,是无法确定一棵二叉树的,原因在 ...

  2. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  3. 【Java入门提高篇】Day25 史上最详细的HashMap红黑树解析

    当当当当当当当,好久不见,最近又是换工作,又是换房子,忙的不可开交,断更了一小段时间,最重要的一篇迟迟出不来,每次都犹抱琵琶半遮面,想要把它用通俗易懂的方式进行说明,确实有一定的难度,可愁煞我也,但自 ...

  4. AVL树与红黑树

    平衡树是平时经常使用数据结构. C++/JAVA中的set与map都是通过红黑树实现的. 通过了解平衡树的实现原理,可以更清楚的理解map和set的使用场景. 下面介绍AVL树和红黑树. 1. AVL ...

  5. Java集合详解6:TreeMap和红黑树

    Java集合详解6:TreeMap和红黑树 初识TreeMap 之前的文章讲解了两种Map,分别是HashMap与LinkedHashMap,它们保证了以O(1)的时间复杂度进行增.删.改.查,从存储 ...

  6. 史上最详细的HashMap红黑树解析

      简介:请允许我当一回标题党.好了,言归正传,本篇主要内容便是介绍HashMap的男二号——TreeNode(男一号还是给Node吧,毕竟是TreeNode的爷爷,而且普通节点一般来说也比TreeN ...

  7. Bzoj3227 [Sdoi2008]红黑树(tree)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 125 Description 红黑树是一类特殊的二叉搜索树,其中每个结点被染 ...

  8. 算法导论 第十三章 红黑树(python)-1插入

    红黑树是上一章二叉搜索树的改进,实现一种平衡 ,保证不会出现二叉树变链表的情况,基本动态集合操作的时间复杂度为O(lgn) 实际用途:c++stl中的set,map是用他实现的 红黑树的性质: 1.每 ...

  9. 红黑树之 原理和算法详细介绍(阿里面试-treemap使用了红黑树) 红黑树的时间复杂度是O(lgn) 高度<=2log(n+1)1、X节点左旋-将X右边的子节点变成 父节点 2、X节点右旋-将X左边的子节点变成父节点

    红黑树插入删除 具体参考:红黑树原理以及插入.删除算法 附图例说明   (阿里的高德一直追着问) 或者插入的情况参考:红黑树原理以及插入.删除算法 附图例说明 红黑树与AVL树 红黑树 的时间复杂度 ...

随机推荐

  1. html 显示 pdf

    html 显示 pdf文件四种方式: 1. <embed src="pdf/wobu.pdf" type="application/pdf" width= ...

  2. 树莓派安装使用docker

    2019/11/11, 树莓派4B, Raspbian Buster,Docker 19.03.4 摘要:树莓派Raspbian Buster中安装Docker,Dockerfile更改软件源 安装d ...

  3. pytest之mark功能

    pytest系列(一)中给大家介绍了pytest的特性,以及它的编写用例的简单至极. 那么在实际工作当中呢,我们要写的自动化用例会比较多,不会都放在一个py文件里. 如下图所示,我们编写的用例存放在不 ...

  4. POI SXSSF API 导出1000万数据示例

    SXSSF是XSSF API的兼容流式扩展,在必须生成非常大的电子表格.并且堆空间有限时使用. SXSSF通过限制对滑动窗口内数据的访问实现低内存占用,而XSSF允许访问文档中的所有行. 不在窗口中的 ...

  5. Java基础篇(中)

    4.Java 关键字 下面列出了 Java 关键字.这些保留字不能用于常量.变量.和任何标识符的名称. 类别 关键字 说明 访问控制 private 私有的 protected 受保护的 public ...

  6. Laravel使用Redis共享Session

    一.当系统的访问量上升的时候,使用Redis保存Session可以提高系统的性能,同时也方便多机负载的时候共享Session 打开config/database.php.在redis中增加sessio ...

  7. xmlhttp.status的值及解释

      100——客户必须继续发出请求 101——客户要求服务器根据请求转换HTTP协议版本 200——交易成功 201——提示知道新文件的URL 202——接受和处理.但处理未完成 203——返回信息不 ...

  8. CSS 过渡动画

    一.过渡 过渡(transition)是CSS3中具有颠覆性的特征之一,可以在不使用 Flash 动画或 JavaScript 的情况下,当元素从一种样式变换为另一种样式时为元素添加效果. 在CSS3 ...

  9. python学习之:序列类型 之列表,元组,range

    列表 列表是可变序列,通常用于存放同类项目的集合(其中精确的相似程度将根据应用而变化). class list([iterable]) 可以用多种方式构建列表: 使用一对方括号来表示空列表: [ ] ...

  10. pandas 之 数据清洗-缺失值

    Abstract During the course fo doing data analysis and modeling, a significant amount of time is spen ...