最近在复现R-CNN一系列的实验时,配置代码环境真是花费了不少时间。由于对MATLAB不熟悉,实验采用的都是github上rbg大神的Python版本。在配置Faster
R-CNN时,编译没有问题,一运行 ./tools/demo.py --net zf  就会出现如下错误:

<span style="font-size:14px;">Loaded network ./data/faster_rcnn_models/ZF_faster_rcnn_final.caffemodel    

F1008  roi_pooling_layer.cu:91] Check failed: error == cudaSuccess (8 vs. 0) invalid device function    

*** Check failure stack trace: ***  </span>

但是采用CPU mode运行时可以成功。

最后在https://github.com/rbgirshick/py-faster-rcnn/issues/2
找到了我想要的答案,有兴趣的可以慢慢阅读。

不想看的话,就直接按照我下面的方式修改。

一般情况下都是因为显卡的计算能力不同而导致的,修改 py-faster-rcnn/lib/setup.py 的第135行,将arch改为与你显卡相匹配的数值,(比如我的GTX 760,计算能力是3.0,就将sm_35改成了sm_30)然后删除utils/bbox.c,nms/cpu_nms.c ,nms/gpu_nms.cpp 重新编译即可



我看到有些人说还有其他的问题,那么可以在最开始的makefile.config文件中就开始修改,不过我没有试过,具体步骤如下

  1. <span style="font-size:14px;">As below, there is my solution (thress steps):
  2. 1 if you're using the GPU instance on AWS, then please change the architecture setting into:
  3. # CUDA architecture setting: going with all of them.
  4. # For CUDA < 6.0, comment the *_50 lines for compatibility.
  5. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
  6. -gencode arch=compute_50,code=sm_50 \
  7. -gencode arch=compute_50,code=compute_50
  8. Because the GPU in AWS does not support compute_35
  9. 2 I changed sm_35 into sm_30 in lib/setup.py file
  10. 3 cd lib, remove these files: utils/bbox.c nms/cpu_nms.c nms/gpu_nms.cpp, if they exist.
  11. And then make && cd ../caffe/ && make clean && make -j8 && make pycaffe -j8  </span>

【CUDA开发】 Check failed: error == cudaSuccess (8 vs. 0) invalid device function的更多相关文章

  1. caffe运行错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0)  invalid device function 原因:由于Makefil ...

  2. 配置SSD-caffe测试时出现“Check failed: error == cudaSuccess (10 vs. 0) invalid device ordinal”解决方案

    这是由于GPU数量不匹配造成的,如果训练自己的数据,那么我们只需要将solver.prototxt文件中的device_id项改为自己的GPU块数,一块就是0,两块就是1,以此类推. 但是SSD配置时 ...

  3. caffe 训练时,出现错误:Check failed: error == cudaSuccess (4 vs. 0) unspecified launch failure

    I0415 15:03:37.603461 27311 solver.cpp:42] Solver scaffolding done.I0415 15:03:37.603549 27311 solve ...

  4. Caffe 分类问题 Check failed: error == cudaSuccess (2 vs. 0) out of memory

    如果图片过大,需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

  5. check failed status == cudnn_status_success (4 vs. 0) cudnn_status_internal_error

    Check failed: error == cudaSuccess (30 vs. 0) unknown error  这个有可能是显存不足造成的,或者网络参数不对造成的 check failed ...

  6. 目标检测faster rcnn error == cudaSuccess (2 vs. 0) out of memory

    想尝试 更深更强的网络,或者自己写了一个费显存的层,发现1080 ti的11G显存不够用了,老师报显存不够怎么办? Check failed: error == cudaSuccess (2 vs. ...

  7. Check failed: status == CUBLAS_STATUS_SUCCESS (11 vs. 0) CUBLAS_STATUS_MAPPING_ERROR

    I0930 21:23:15.115576 30918 solver.cpp:281] Learning Rate Policy: multistepF0930 21:23:17.263314 310 ...

  8. CUDA报错: Cannot create Cublas handle. Cublas won't be available. 以及:Check failed: status == CUBLAS_STATUS_SUCCESS (1 vs. 0) CUBLAS_STATUS_NOT_INITIALIZED

    Error描述: aita@aita-Alienware-Area-51-R5:~/AITA2/daisida/ssd-github/caffe$ make runtest -j8 .build_re ...

  9. windows7下解决caffe check failed registry.count(type) == 1(0 vs. 1) unknown layer type问题

    在Windows7下调用vs2013生成的Caffe静态库时经常会提示Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer t ...

随机推荐

  1. springboot,eclipse打包出错处理

    打jar包报错 [WARNING] The POM for org.apache.maven.plugins:maven-clean-plugin:jar:3.1.0 is invalid, tran ...

  2. C语言 define实现的宏函数汇总

    最大值,最小值 #define MAX( x, y ) ( (x) > (y) ? (x) : (y) )#define MIN( x, y ) ( (x) < (y) ? (x) : ( ...

  3. 好的想法只是OKR的开始--创业者谨记

    每一个出版过作品的作家都有这样的体验:有人找到你,说他有一个极妙的想法,并迫不及待的想和你一起实现这个想法:结局也总是差不多,它们艰难的完成了灵感部分,而你只需要简单的把它写成小说,收益则需要五五分成 ...

  4. java 数组逆序输出(方法内部的代码)

    //现在数组中有1, 2, 4, 5, 6, 7, 8 请逆序输出 int [] arrs={1,2,3,4,5,6,7,8}; for(int i=arrs.length-1;i>-1;i-- ...

  5. Log4net 数据库存储(四)

    1.新建一个空的ASP.Net 空项目,然后添加Default.aspx窗体 2.添加配置文件:log4net.config <?xml version="1.0" enco ...

  6. MongoDB---如何避免插入重复数据(pymongo)

    以下摘自pymongo文档: update_one(filter, update, upsert=False) update_many(filter, update, upsert=False) fi ...

  7. bluestart

    # Add nano as default editorexport EDITOR=nanoexport PULSE_LATENCY_MSEC=60 alias ls='ls --color=auto ...

  8. ICEM-二维Y型网格的一种做法

    原视频下载地址:https://pan.baidu.com/s/1nvSBHoP 密码: uqy3

  9. hadoop大作业

    1.数据准备 2.把CSV添加到/bigdatacase/dataset中 3.检查前5行并删除第一行 4.将csv文件导入hadoop并检查前10行数据情况 5.数据文件导入hive 6.在Hive ...

  10. 网络营销CPA、CPS、CPM、CPT、CPC 是什么

    网络营销之所以越来越受到重视一个主要的原因就是因为“精准”.相比较传统媒体的陈旧广告形式,网络营销能为广告主带来更为确切的效果与回报,更有传统媒体所没有的即时互动性.很多企业借助于精准的网络营销成为人 ...