最近在复现R-CNN一系列的实验时,配置代码环境真是花费了不少时间。由于对MATLAB不熟悉,实验采用的都是github上rbg大神的Python版本。在配置Faster
R-CNN时,编译没有问题,一运行 ./tools/demo.py --net zf  就会出现如下错误:

<span style="font-size:14px;">Loaded network ./data/faster_rcnn_models/ZF_faster_rcnn_final.caffemodel    

F1008  roi_pooling_layer.cu:91] Check failed: error == cudaSuccess (8 vs. 0) invalid device function    

*** Check failure stack trace: ***  </span>

但是采用CPU mode运行时可以成功。

最后在https://github.com/rbgirshick/py-faster-rcnn/issues/2
找到了我想要的答案,有兴趣的可以慢慢阅读。

不想看的话,就直接按照我下面的方式修改。

一般情况下都是因为显卡的计算能力不同而导致的,修改 py-faster-rcnn/lib/setup.py 的第135行,将arch改为与你显卡相匹配的数值,(比如我的GTX 760,计算能力是3.0,就将sm_35改成了sm_30)然后删除utils/bbox.c,nms/cpu_nms.c ,nms/gpu_nms.cpp 重新编译即可



我看到有些人说还有其他的问题,那么可以在最开始的makefile.config文件中就开始修改,不过我没有试过,具体步骤如下

  1. <span style="font-size:14px;">As below, there is my solution (thress steps):
  2. 1 if you're using the GPU instance on AWS, then please change the architecture setting into:
  3. # CUDA architecture setting: going with all of them.
  4. # For CUDA < 6.0, comment the *_50 lines for compatibility.
  5. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
  6. -gencode arch=compute_50,code=sm_50 \
  7. -gencode arch=compute_50,code=compute_50
  8. Because the GPU in AWS does not support compute_35
  9. 2 I changed sm_35 into sm_30 in lib/setup.py file
  10. 3 cd lib, remove these files: utils/bbox.c nms/cpu_nms.c nms/gpu_nms.cpp, if they exist.
  11. And then make && cd ../caffe/ && make clean && make -j8 && make pycaffe -j8  </span>

【CUDA开发】 Check failed: error == cudaSuccess (8 vs. 0) invalid device function的更多相关文章

  1. caffe运行错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0) invalid device function

    错误: im2col.cu:61] Check failed: error == cudaSuccess (8 vs. 0)  invalid device function 原因:由于Makefil ...

  2. 配置SSD-caffe测试时出现“Check failed: error == cudaSuccess (10 vs. 0) invalid device ordinal”解决方案

    这是由于GPU数量不匹配造成的,如果训练自己的数据,那么我们只需要将solver.prototxt文件中的device_id项改为自己的GPU块数,一块就是0,两块就是1,以此类推. 但是SSD配置时 ...

  3. caffe 训练时,出现错误:Check failed: error == cudaSuccess (4 vs. 0) unspecified launch failure

    I0415 15:03:37.603461 27311 solver.cpp:42] Solver scaffolding done.I0415 15:03:37.603549 27311 solve ...

  4. Caffe 分类问题 Check failed: error == cudaSuccess (2 vs. 0) out of memory

    如果图片过大,需要适当缩小batch_size的值,否则使用GPU时可能超出其缓存大小而报错

  5. check failed status == cudnn_status_success (4 vs. 0) cudnn_status_internal_error

    Check failed: error == cudaSuccess (30 vs. 0) unknown error  这个有可能是显存不足造成的,或者网络参数不对造成的 check failed ...

  6. 目标检测faster rcnn error == cudaSuccess (2 vs. 0) out of memory

    想尝试 更深更强的网络,或者自己写了一个费显存的层,发现1080 ti的11G显存不够用了,老师报显存不够怎么办? Check failed: error == cudaSuccess (2 vs. ...

  7. Check failed: status == CUBLAS_STATUS_SUCCESS (11 vs. 0) CUBLAS_STATUS_MAPPING_ERROR

    I0930 21:23:15.115576 30918 solver.cpp:281] Learning Rate Policy: multistepF0930 21:23:17.263314 310 ...

  8. CUDA报错: Cannot create Cublas handle. Cublas won't be available. 以及:Check failed: status == CUBLAS_STATUS_SUCCESS (1 vs. 0) CUBLAS_STATUS_NOT_INITIALIZED

    Error描述: aita@aita-Alienware-Area-51-R5:~/AITA2/daisida/ssd-github/caffe$ make runtest -j8 .build_re ...

  9. windows7下解决caffe check failed registry.count(type) == 1(0 vs. 1) unknown layer type问题

    在Windows7下调用vs2013生成的Caffe静态库时经常会提示Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer t ...

随机推荐

  1. LGOJP3959 宝藏

    题目链接 题目链接 题解 一开始想了一个错误的状压dp,水了40分. 这里先记录一下错误的做法: 错解: 设\(g[i,j,S]\)从\(i\)到\(j\),只经过集合\(S\)中的点的最短路,这个可 ...

  2. spring Security的自定义用户认证

    首先我需要在xml文件中声明.我要进行自定义用户的认证类,也就是我要自己从数据库中进行查询 <http pattern="/*.html" security="no ...

  3. drf框架(2)

    drf框架 """接口: 接口规范: drf的生命周期: 序列化组件: 三大认证:过滤,删选,排序组件 请求,响应,解析,异常 jwt:json web tooken & ...

  4. 项目Alpha冲刺——总结

    作业描述 课程: 软件工程1916|W(福州大学) 作业要求: 项目Alpha冲刺(团队) 团队名称: 火鸡堂 作业目标: 完成项目Alpha冲刺 团队信息 队名:火鸡堂 队员学号 队员姓名 博客地址 ...

  5. 网络基础知识(http请求)

    http请求的过程 域名解析----TCP连接 ----发送请求-----响应请求----获取html代码----浏览器渲染 TCP是主机对主机层的控制传输协议,提供可靠的连接服务 TCP的三次握手 ...

  6. Maven模块化搭建总结

    1.Maven插件在eclipse的安装 windows——>preferences——>Maven——>installations——>add——>installati ...

  7. MSc in Robotics

    MSc in RoboticsProgramming Methods for Robotics AssignmentIrene Moulitsas & Peter SherarCranfiel ...

  8. 查看mysql执行时间

    mysql的 profiling不是默认打开的 查看profiling是否找开 mysql> show variables like "%pro%"; +---------- ...

  9. 51Node1228序列求和 ——自然数幂和模板&&伯努利数

    伯努利数法 伯努利数原本就是处理等幂和的问题,可以推出 $$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n ...

  10. P4848 崂山白花蛇草水

    题意:支持修改的矩形第 \(k\) 大. 题解:动态开点权值线段树 套 Kd-tree. 然后也没什么难的但就是写不对...调了两天才调出来然后发现跑的巨慢,于是又%了一发Claris'题解,跑的真快 ...