N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.

The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).

The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.

Example 1:

  1. Input: row = [0, 2, 1, 3]
  2. Output: 1
  3. Explanation: We only need to swap the second (row[1]) and third (row[2]) person.

Example 2:

  1. Input: row = [3, 2, 0, 1]
  2. Output: 0
  3. Explanation: All couples are already seated side by side. 

Note:

  1. len(row) is even and in the range of [4, 60].
  2. row is guaranteed to be a permutation of 0...len(row)-1.

有N个情侣和2N个座位,想让每一对情侣都能够牵手,也就是挨着坐。每次能交换任意两个人的座位,求最少需要换多少次座位。

解法1:cyclic swapping

解法2: Union Find

Java: 1

  1. public int minSwapsCouples(int[] row) {
  2. int res = 0, N = row.length;
  3.  
  4. int[] ptn = new int[N];
  5. int[] pos = new int[N];
  6.  
  7. for (int i = 0; i < N; i++) {
  8. ptn[i] = (i % 2 == 0 ? i + 1 : i - 1);
  9. pos[row[i]] = i;
  10. }
  11.  
  12. for (int i = 0; i < N; i++) {
  13. for (int j = ptn[pos[ptn[row[i]]]]; i != j; j = ptn[pos[ptn[row[i]]]]) {
  14. swap(row, i, j);
  15. swap(pos, row[i], row[j]);
  16. res++;
  17. }
  18. }
  19.  
  20. return res;
  21. }
  22.  
  23. private void swap(int[] arr, int i, int j) {
  24. int t = arr[i];
  25. arr[i] = arr[j];
  26. arr[j] = t;
  27. }

Java: 2

  1. class Solution {
  2. private class UF {
  3. private int[] parents;
  4. public int count;
  5. UF(int n) {
  6. parents = new int[n];
  7. for (int i = 0; i < n; i++) {
  8. parents[i] = i;
  9. }
  10. count = n;
  11. }
  12.  
  13. private int find(int i) {
  14. if (parents[i] == i) {
  15. return i;
  16. }
  17. parents[i] = find(parents[i]);
  18. return parents[i];
  19. }
  20.  
  21. public void union(int i, int j) {
  22. int a = find(i);
  23. int b = find(j);
  24. if (a != b) {
  25. parents[a] = b;
  26. count--;
  27. }
  28. }
  29. }
  30. public int minSwapsCouples(int[] row) {
  31. int N = row.length/ 2;
  32. UF uf = new UF(N);
  33. for (int i = 0; i < N; i++) {
  34. int a = row[2*i];
  35. int b = row[2*i + 1];
  36. uf.union(a/2, b/2);
  37. }
  38. return N - uf.count;
  39. }
  40. } 

Python:

  1. # Time: O(n)
  2. # Space: O(n)
  3.  
  4. class Solution(object):
  5. def minSwapsCouples(self, row):
  6. """
  7. :type row: List[int]
  8. :rtype: int
  9. """
  10. N = len(row)//2
  11. couples = [[] for _ in xrange(N)]
  12. for seat, num in enumerate(row):
  13. couples[num//2].append(seat//2)
  14. adj = [[] for _ in xrange(N)]
  15. for couch1, couch2 in couples:
  16. adj[couch1].append(couch2)
  17. adj[couch2].append(couch1)
  18.  
  19. result = 0
  20. for couch in xrange(N):
  21. if not adj[couch]: continue
  22. couch1, couch2 = couch, adj[couch].pop()
  23. while couch2 != couch:
  24. result += 1
  25. adj[couch2].remove(couch1)
  26. couch1, couch2 = couch2, adj[couch2].pop()
  27. return result # also equals to N - (# of cycles)  

C++:

  1. int minSwapsCouples(vector<int>& row) {
  2. int res = 0, N = row.size();
  3.  
  4. vector<int> ptn(N, 0);
  5. vector<int> pos(N, 0);
  6.  
  7. for (int i = 0; i < N; i++) {
  8. ptn[i] = (i % 2 == 0 ? i + 1 : i - 1);
  9. pos[row[i]] = i;
  10. }
  11.  
  12. for (int i = 0; i < N; i++) {
  13. for (int j = ptn[pos[ptn[row[i]]]]; i != j; j = ptn[pos[ptn[row[i]]]]) {
  14. swap(row[i], row[j]);
  15. swap(pos[row[i]], pos[row[j]]);
  16. res++;
  17. }
  18. }
  19.  
  20. return res;
  21. }

  

  

All LeetCode Questions List 题目汇总

[LeetCode] 765. Couples Holding Hands 情侣牵手的更多相关文章

  1. 【LeetCode】765. Couples Holding Hands 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/couples- ...

  2. 765. Couples Holding Hands

    ▶ n 对夫妻共 2n 个人随机坐成一排,“交换其中某两人的位置” 称为一次操作,求最少的操作此次数,使 n 对夫妻两人都相邻.初始座位为非负整数列 D1n-1,其中值为 2k 和 2k+1 的两个元 ...

  3. Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands)

    Leetcode之并查集专题-765. 情侣牵手(Couples Holding Hands) N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并 ...

  4. Java实现 LeetCode 765 情侣牵手(并查集 || 暴力)

    765. 情侣牵手 N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并肩坐在一起. 一次交换可选择任意两人,让他们站起来交换座位. 人和座位用 0 ...

  5. [Swift]LeetCode765. 情侣牵手 | Couples Holding Hands

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  6. [LeetCode] Couples Holding Hands 两两握手

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  7. LeetCode-765.情侣牵手

    N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手. 计算最少交换座位的次数,以便每对情侣可以并肩坐在一起. 一次交换可选择任意两人,让他们站起来交换座位. 人和座位用 0 到 2N-1 的整 ...

  8. LeetCode765. Couples Holding Hands

    N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum numb ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. 微信小程序~tabBar和navigator一起使用无效

    1.当注册了tabBar的时候,使用navigator时会发现不能跳转,这个时候需要在navigator上加上open-type=’switchTab’ 属性 <navigator open-t ...

  2. Java内存区域与内存溢出异常(jdk 6,7,8)

    运行时数据区域 Java虚拟机在执行Java程序的过程中会把它关联的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则依赖用户 ...

  3. 【游记】CSP2019 垫底记

    考试时候的我: Day 1 做完 \(T1\) 和 \(T2\),还有 \(2.5 h\),我想阿克 \(Day1\).(\(T3\):不,你不想) 不过一会就想出来给每个点 dfs 贪心选一个点,然 ...

  4. JPA注解开发

    JPA注解开发 jpa是sun公司的一个ORM规范,只有接口和注解,没有具体实现. jpa是EJB3中的. 单表常用注解 书写注解,并配置 @Entity @Table(name = "c_ ...

  5. SQL SERVER错误:已超过了锁请求超时时段。

    问题:远程连接数据库,无法打开视图,报错:SQL SERVER错误:已超过了锁请求超时时段. (Microsoft SQL Server,错误: 1222) 执行语句获取进程id select * f ...

  6. ArrayList 集合:库存管理

    import java.util.ArrayList; import java.lang.Integer; import java.util.Scanner; import java.util.Ran ...

  7. mov offset和lea的区别

    mov offset和lea的区别  原文地址:https://www.cnblogs.com/fanzi2009/archive/2011/11/29/2267725.html 全局变量取地址用mo ...

  8. 手工部署yugabyte的几点说明

    ntp 时间同步 ntp 时间同步对于yugabyte 是一个比较重要的服务,需要注意时间的同步 YB-Master 个数的说明 原则 YB-Master 的个数,必须和复制因子的个数一样,同时mas ...

  9. NVIDIA vGPU License服务器搭建详解

    当配置有vGPU虚拟机发起License授权请求,授权服务器会根据License中所包含的GRID License版本,加载不同的vGPU驱动(普通驱动和专业Quodra卡驱动).目前vPC和vApp ...

  10. 【JZOJ6226】【20190618】纳什均衡

    题目 一颗二叉树,每个点儿子个数为0 或 2 ,对每个叶子有一个权值\((c(u),d(u))\) 从根结点开始走,Alice 可以选择奇数层的走法,Bob 可以选择偶数层的走法,分别获得最后走到叶子 ...