洛谷P3629 [APIO2010]巡逻(树的直径)
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\)。
考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍。这时选择连接树的直径的两个端点显然是最优的。
难就难在\(k=2\)的时候,还是上面的思路,首先肯定连接两个叶子结点最优。假设我们连接的是\(x,y\)两个叶子结点,它们到直径的距离分别为\(dis[x],dis[y]\),并设直径上两点的距离为\(d[u,v]\),这里\(u,v\)分别为叶子结点所在链和直径的交点。
因此最后的答案会增加\(d[u,v]-dis[x]-dis[y]\)。要使答案最小,那么也就也是使得\(dis[x]+dis[y]-d[u,v]\)最大。脑补一下,就会发现这其实就是在所有直径上面的边权取反过后,树的最长链。
所以再求一次树的直径就好了。因为最后有负边权存在,通过\(dfs/bfs\)来求会出错。所以最后dp一次就好啦。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 5;
int n, k;
struct Edge{
int u, v, next, w;
}e[N << 1];
int head[N], tot;
void adde(int u, int v) {
e[tot].w = 1; e[tot].v = v; e[tot].next = head[u]; head[u] = tot++;
}
int vis[N], f[N], d[N], dp[N];
void dfs(int u, int fa) {
f[u] = fa;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v != fa) {
d[v] = d[u] + e[i].w;
dfs(v, u) ;
}
}
}
int mx, p, L;
void Get(int x) {
d[x] = mx = 0;
dfs(x, 0);
for(int i = 1; i <= n; i++)
if(d[i] > mx) mx = d[i], p = i;
}
int solve() {
Get(1);Get(p);
return mx;
}
void dfs2(int u, int fa) {
vis[u] = 1;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v == fa || !vis[v]) continue ;
e[i].w = e[i ^ 1].w = -1;
dfs2(v, u) ;
}
}
void Dp(int u, int fa) {
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v == fa) continue ;
Dp(v, u);
L = max(L, dp[u] + dp[v] + e[i].w) ;
dp[u] = max(dp[u], dp[v] + e[i].w) ;
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> k;
memset(head, -1, sizeof(head)) ;
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
adde(u, v); adde(v, u);
}
int l = solve() ;
int ans = 2 * (n - 1) - l + 1;
if(k == 2) {
int u = p;
while(u != 0) {
vis[u] = 1;
u = f[u];
}
dfs2(p, 0) ;
Dp(1, 0) ;
ans = ans - L + 1;
}
cout << ans ;
return 0;
}
洛谷P3629 [APIO2010]巡逻(树的直径)的更多相关文章
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- [洛谷P3629] [APIO2010]巡逻
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...
- 洛谷 P3629 [APIO2010]巡逻
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...
- BZOJ1912或洛谷3629 [APIO2010]巡逻
一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【BZOJ2830/洛谷3830】随机树(动态规划)
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...
- 【洛谷 P3629】 [APIO2010]巡逻 (树的直径)
题目链接 容易发现,当加一条边时,树上会形成一个环,这个环上的每个点都是只要走一次的,也就是说我们的答案减少了这个环上点的个数,要使答案最小,即要使环上的点最多,求出直径\(L\),则答案为\(2(n ...
- 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925
题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...
- 洛谷 [P3629] 巡逻
树的直径 树的直径有两种求法 1.两遍 dfs 法, 便于输出具体方案,但是无法处理负权边 2.DP 法,代码量少,可以处理负权边 #include <iostream> #include ...
随机推荐
- 推荐一款好用的免费FTP客户端Filezilla
官网地址:https://filezilla-project.org/
- PIL和Pillow
关于Pillow与PIL PIL(Python Imaging Library)是Python一个强大方便的图像处理库,名气也比较大.不过只支持到Python 2.7. PIL官方网站:http:// ...
- JDK本地内存追踪NMT
通常情况下, JVM占用的内存不仅仅是-Xmx, -Xms等指定的大小, 因为JVM也是一个应用, 它需要额外的空间去完成它的工作, 除了堆外, JVM会分配内存的地方包括以下这些: Metaspac ...
- quartz与c3p0冲突
在SSM中使用连接池c3p0正常,引入quartz后发现后台报错 java.lang.AbstractMethodError: Method com/mchange/v2/c3p0/impl/NewP ...
- spring Boot 学习(三、Spring Boot与检索)
一.检索我们的应用经常需要添加检索功能,开源的 ElasticSearch 是目前全文搜索引擎的 首选.他可以快速的存储.搜索和分析海量数据.Spring Boot通过整合Spring Data El ...
- java之spring之配置讲解
首先目录结构如下: 1. User.java package cn.sxt.vo; import java.util.Date; public class User { private String ...
- 利用jQuery-Word-Export导出word (含ECharts)
写在前面的话:写博客的初衷是想把自己学到的知识总结下来,在写的过程中,相当于又把知识梳理了一遍.我坚信有输入,有输出,技术才会进步.我一般都会自己写一个小demo,测试没有问题,再进行整理. 在实 ...
- MVC中常用的返回值方法
我们上边所看到的Action都是return View();我们可以看作这个返回值用于解析一个aspx文件.而它的返回类型是ActionResult如 public ActionResult Inde ...
- NMS的实现代码详解
NMS代码说明(来自Fast-RCNN) 个人觉得NMS包含很多框,其坐标为(x1,y1,x2,y2),每个框对应了一个score,我们将按照score得分降序,并将第一个最高的score的框(我们叫 ...
- iOS多线程GCD简介(二)
在上一篇中,我们主要讲了Dispatch Queue相关的内容.这篇主要讲一下一些和实际相关的使用实例,Dispatch Groups和Dispatch Semaphore. dispatch_aft ...