洛谷P3629 [APIO2010]巡逻(树的直径)
如果考虑不算上新修的道路,那么答案显然为\(2*(n-1)\)。
考虑\(k=1\)的情况,会发现如果我们新修建一个道路,那么就会有一段路程少走一遍。这时选择连接树的直径的两个端点显然是最优的。
难就难在\(k=2\)的时候,还是上面的思路,首先肯定连接两个叶子结点最优。假设我们连接的是\(x,y\)两个叶子结点,它们到直径的距离分别为\(dis[x],dis[y]\),并设直径上两点的距离为\(d[u,v]\),这里\(u,v\)分别为叶子结点所在链和直径的交点。
因此最后的答案会增加\(d[u,v]-dis[x]-dis[y]\)。要使答案最小,那么也就也是使得\(dis[x]+dis[y]-d[u,v]\)最大。脑补一下,就会发现这其实就是在所有直径上面的边权取反过后,树的最长链。
所以再求一次树的直径就好了。因为最后有负边权存在,通过\(dfs/bfs\)来求会出错。所以最后dp一次就好啦。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 5;
int n, k;
struct Edge{
int u, v, next, w;
}e[N << 1];
int head[N], tot;
void adde(int u, int v) {
e[tot].w = 1; e[tot].v = v; e[tot].next = head[u]; head[u] = tot++;
}
int vis[N], f[N], d[N], dp[N];
void dfs(int u, int fa) {
f[u] = fa;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v != fa) {
d[v] = d[u] + e[i].w;
dfs(v, u) ;
}
}
}
int mx, p, L;
void Get(int x) {
d[x] = mx = 0;
dfs(x, 0);
for(int i = 1; i <= n; i++)
if(d[i] > mx) mx = d[i], p = i;
}
int solve() {
Get(1);Get(p);
return mx;
}
void dfs2(int u, int fa) {
vis[u] = 1;
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v == fa || !vis[v]) continue ;
e[i].w = e[i ^ 1].w = -1;
dfs2(v, u) ;
}
}
void Dp(int u, int fa) {
for(int i = head[u]; i != -1; i = e[i].next) {
int v = e[i].v;
if(v == fa) continue ;
Dp(v, u);
L = max(L, dp[u] + dp[v] + e[i].w) ;
dp[u] = max(dp[u], dp[v] + e[i].w) ;
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n >> k;
memset(head, -1, sizeof(head)) ;
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
adde(u, v); adde(v, u);
}
int l = solve() ;
int ans = 2 * (n - 1) - l + 1;
if(k == 2) {
int u = p;
while(u != 0) {
vis[u] = 1;
u = f[u];
}
dfs2(p, 0) ;
Dp(1, 0) ;
ans = ans - L + 1;
}
cout << ans ;
return 0;
}
洛谷P3629 [APIO2010]巡逻(树的直径)的更多相关文章
- 洛谷 P3629 [APIO2010]巡逻 解题报告
P3629 [APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以通 ...
- [洛谷P3629] [APIO2010]巡逻
洛谷题目链接:[APIO2010]巡逻 题目描述 在一个地区中有 n 个村庄,编号为 1, 2, ..., n.有 n – 1 条道路连接着这些村 庄,每条道路刚好连接两个村庄,从任何一个村庄,都可以 ...
- 洛谷 P3629 [APIO2010]巡逻
题目在这里 这是一个紫题,当然很难. 我们往简单的想,不建立新的道路时,从1号节点出发,把整棵树上的每条边遍历至少一次,再回到1号节点,会恰好经过每条边两次,路线总长度为$2(n-1)$,根据树的深度 ...
- BZOJ1912或洛谷3629 [APIO2010]巡逻
一道树的直径 BZOJ原题链接 洛谷原题链接 显然在原图上路线的总长为\(2(n-1)\). 添加第一条边时,显然会形成一个环,而这条环上的所有边全部只需要走一遍.所以为了使添加的边的贡献最大化,我们 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 【BZOJ2830/洛谷3830】随机树(动态规划)
[BZOJ2830/洛谷3830]随机树(动态规划) 题面 洛谷 题解 先考虑第一问. 第一问的答案显然就是所有情况下所有点的深度的平均数. 考虑新加入的两个点,一定会删去某个叶子,然后新加入两个深度 ...
- 【洛谷 P3629】 [APIO2010]巡逻 (树的直径)
题目链接 容易发现,当加一条边时,树上会形成一个环,这个环上的每个点都是只要走一次的,也就是说我们的答案减少了这个环上点的个数,要使答案最小,即要使环上的点最多,求出直径\(L\),则答案为\(2(n ...
- 树的直径初探+Luogu P3629 [APIO2010]巡逻【树的直径】By cellur925
题目传送门 我们先来介绍一个概念:树的直径. 树的直径:树中最远的两个节点间的距离.(树的最长链)树的直径有两种方法,都是$O(N)$. 第一种:两遍bfs/dfs(这里写的是两遍bfs) 从任意一个 ...
- 洛谷 [P3629] 巡逻
树的直径 树的直径有两种求法 1.两遍 dfs 法, 便于输出具体方案,但是无法处理负权边 2.DP 法,代码量少,可以处理负权边 #include <iostream> #include ...
随机推荐
- leetcode刷题系列(一) 26题 删除排序数组中的重复项
题干 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间的条件下完成. 示 ...
- centos7修改主机名的方法
在CentOS7中,有三种定义的主机名: 静态的(Static hostname) “静态”主机名也称为内核主机名,是系统在启动时从/etc/hostname自动初始化的主机名. 瞬态的(Tansie ...
- Spring学习指南-第二章-Spring框架基础(完)
第二章 Spring框架基础 面向接口编程的设计方法 在上一章中,我们看到了一个依赖于其他类的POJO类包含了对其依赖项的具体类的引用.例如,FixedDepositController 类包含 ...
- JAVA–利用Filter和session防止页面重复提交
JAVA–利用Filter和session防止页面重复提交解决思路:1 用户访问表单页面,先经过过滤器,过滤器设置一个随机id作为token令牌, 并将该token放入表单隐藏域中.2 表单响应到浏览 ...
- 关于使用K8S的技术流程
部署Gogs版本管理系统 地址:https://gogs.io/docs 部署Harbor私有仓库 地址:https://github.com/goharbor/harbor/blob/master/ ...
- java枚举enum总结大全
1.注意点 (1)枚举中的构造方法必须是private的. (2)枚举中可以定义抽象方法和一般方法,但枚举对象必须实现所有抽象方法. (3)枚举对象必须放在第一行. package classTwo0 ...
- Actions require unique method/path combination for Swagger
原文:Actions require unique method/path combination for Swagger services.AddSwaggerGen (c => { c.Re ...
- C# vb .net实现倾斜效果滤镜
在.net中,如何简单快捷地实现Photoshop滤镜组中的倾斜效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一步 ...
- linux 安装Python3.6
1.安装依赖 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel ...
- Kafka 生产者、消费者与分区的关系
背景 最近和海康整数据对接, 需要将海康产生的结构化数据拿过来做二次识别. 基本的流程: 海康大数据 --> kafka server --> 平台 Kafka 的 topic 正常过车 ...