import numpy as np
from math import sqrt
import operator as opt

def normData(dataSet):
maxVals = dataSet.max(axis=0)
minVals = dataSet.min(axis=0)
ranges = maxVals - minVals
retData = (dataSet - minVals) / ranges
return retData, ranges, minVals

def kNN(dataSet, labels, testData, k):
distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方
distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和
distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离
sortedIndices = distances.argsort() # 排序,得到排序后的下标
indices = sortedIndices[:k] # 取最小的k个
labelCount = {} # 存储每个label的出现次数
for i in indices:
label = labels[i]
labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一
sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序
return sortedCount[0][0] # 返回出现次数最大的label

if name == "main":
dataSet = np.array([[2, 3], [6, 8],[1,1],[3,4],[5,6]])
normDataSet, ranges, minVals = normData(dataSet)
labels = ['a', 'b','c','a','b']
testData = np.array([3.9, 5.5])
normTestData = (testData - minVals) / ranges
result = kNN(normDataSet, labels, normTestData, 2)
print(result)

调用库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs

X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]

X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)

聚类------KNN的更多相关文章

  1. KNN和Kmeans聚类有什么不同?

    这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习.Kmeans是聚类算法,KNN是分类(或回归)算法. Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里 ...

  2. knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别

    可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...

  3. 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)

    聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...

  4. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 用scikit-learn学习谱聚类

    在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...

  6. 谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...

  7. 用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...

  8. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  9. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

随机推荐

  1. composer安装FOSUserBundle内存溢出

    内存溢出异常: Fatal error: Allowed memory size of 2147483648 bytes exhausted (tried to allocate 4096 bytes ...

  2. leetcode的Hot100系列--347. 前 K 个高频元素--hash表+直接选择排序

    这个看着应该是使用堆排序,但我图了一个简单,所以就简单hash表加选择排序来做了. 使用结构体: typedef struct node { struct node *pNext; int value ...

  3. hdu 1427 速算24点【暴力枚举】

    速算24点 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  4. 学java必须知道的那些queue

    队列是我们学java必须接触到的知识,很多内容都和它相关,但是你真的了解它们的概念和使用方法吗?在本文,你可以获取关于queue的一切信息,希望我能够帮助你在java的学习道路上乘风破浪. 概念 队列 ...

  5. centos 安装htop

    1.首先启用 EPEL Repository yum -y install epel-release 2.可以用 yum 直接安裝 Htop: yum -y install htop

  6. 2019 斗鱼java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.斗鱼等公司offer,岗位是Java后端开发,因为发展原因最终选择去了斗鱼,入职一年时间了,之前面试了很多家公 ...

  7. 2019 快乐阳光java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.快乐阳光等公司offer,岗位是Java后端开发,最终选择去了快乐阳光. 面试了很多家公司,感觉大部分公司考察的点 ...

  8. Matlab适配器模式

    适配器模式是连接两个不兼容接口的桥梁,主要分为三种:类适配器.对象适配器以及接口适配器,本文根据https://blog.csdn.net/u012359453/article/details/791 ...

  9. springCloud学习3(Netflix Hystrix弹性客户端)

    springcloud 总集:https://www.tapme.top/blog/detail/2019-02-28-11-33 本次用到全部代码见文章最下方. 一.为什么要有客户端弹性模式   所 ...

  10. PHP CI框架调试开启报错信息方法

    方法如下三种: 1.php.ini 设置 display_errors = On error_reporting = E_ALL | E_STRICT 2.ci index.php 设置 define ...