import numpy as np
from math import sqrt
import operator as opt

def normData(dataSet):
maxVals = dataSet.max(axis=0)
minVals = dataSet.min(axis=0)
ranges = maxVals - minVals
retData = (dataSet - minVals) / ranges
return retData, ranges, minVals

def kNN(dataSet, labels, testData, k):
distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方
distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和
distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离
sortedIndices = distances.argsort() # 排序,得到排序后的下标
indices = sortedIndices[:k] # 取最小的k个
labelCount = {} # 存储每个label的出现次数
for i in indices:
label = labels[i]
labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一
sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序
return sortedCount[0][0] # 返回出现次数最大的label

if name == "main":
dataSet = np.array([[2, 3], [6, 8],[1,1],[3,4],[5,6]])
normDataSet, ranges, minVals = normData(dataSet)
labels = ['a', 'b','c','a','b']
testData = np.array([3.9, 5.5])
normTestData = (testData - minVals) / ranges
result = kNN(normDataSet, labels, normTestData, 2)
print(result)

调用库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs

X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]

X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)

聚类------KNN的更多相关文章

  1. KNN和Kmeans聚类有什么不同?

    这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习.Kmeans是聚类算法,KNN是分类(或回归)算法. Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里 ...

  2. knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别

    可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...

  3. 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)

    聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...

  4. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 用scikit-learn学习谱聚类

    在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...

  6. 谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...

  7. 用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...

  8. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  9. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

随机推荐

  1. 【题解】Luogu CF1172B Nauuo and Circle

    原题传送门 题意:在圆上有n个节点(珂以构成凸多边形),让你给节点编号,使得将题目给你的边(一棵树)没有交叉 我们钦定1为这个树的根节点.任意节点\(x\)的一颗子树的点应该是圆弧上连续的一段(我也不 ...

  2. logstash解析tomcat的catalina.out日志字段

    filter { mutate { remove_field => ["@version","prospector","input", ...

  3. 2019 网宿科技java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.网宿科技等公司offer,岗位是Java后端开发,最终选择去了网宿科技. 面试了很多家公司,感觉大部分公司考察的点 ...

  4. pandas-08 pd.cut()的功能和作用

    pandas-08 pd.cut()的功能和作用 pd.cut()的作用,有点类似给成绩设定优良中差,比如:0-59分为差,60-70分为中,71-80分为优秀等等,在pandas中,也提供了这样一个 ...

  5. 下载Spring

    下载Spring Spring官网并不直接提供Spring的下载,Spring现在托管在GitHub上. 1.进入Spring官网 -> PROJECTS -> SPRING FRAMEW ...

  6. WebApi中将静态页面作为首页

    WebApi中将静态页面作为首页 使用场景 在我的项目中使用Asp.Net WebApi作为后端数据服务,使用Vue作为前端Web,在服务器IIS上部署时需要占用两个端口,一个是80端口,用户在浏览器 ...

  7. Flink Runtime核心机制剖析(转)

    本文主要介绍 Flink Runtime 的作业执行的核心机制.本文将首先介绍 Flink Runtime 的整体架构以及 Job 的基本执行流程,然后介绍在这个过程,Flink 是怎么进行资源管理. ...

  8. 【robotframework】pycharm+robotframe

    一.环境搭建 二.框架介绍 1.settings 是这个测试套件的全局配置表 说明这个测试套件要使用的测试库.资源文件 测试套件的环境初始化(setup)和清除(teardown) 该套件内的标签等 ...

  9. Python学习日记(三十三) Mysql数据库篇 一

    背景 Mysql是一个关系型数据库,由瑞典Mysql AB开发,目前属于Oracle旗下的产品.Mysql是目前最流行的关系型数据库管理系统之一,在WEB方面,Mysql是最好的RDBMS(Relat ...

  10. php后端模式,php-fpm以及php-cgi, fast-cgi,以及与nginx的关系

    关于cgi是什么,fast-cgi是什么,php-cgi是什么,fast-cgi是什么,下面这篇讲的很清楚: https://segmentfault.com/q/1010000000256516 另 ...