聚类------KNN
import numpy as np
from math import sqrt
import operator as opt
def normData(dataSet):
maxVals = dataSet.max(axis=0)
minVals = dataSet.min(axis=0)
ranges = maxVals - minVals
retData = (dataSet - minVals) / ranges
return retData, ranges, minVals
def kNN(dataSet, labels, testData, k):
distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方
distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和
distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离
sortedIndices = distances.argsort() # 排序,得到排序后的下标
indices = sortedIndices[:k] # 取最小的k个
labelCount = {} # 存储每个label的出现次数
for i in indices:
label = labels[i]
labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一
sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序
return sortedCount[0][0] # 返回出现次数最大的label
if name == "main":
dataSet = np.array([[2, 3], [6, 8],[1,1],[3,4],[5,6]])
normDataSet, ranges, minVals = normData(dataSet)
labels = ['a', 'b','c','a','b']
testData = np.array([3.9, 5.5])
normTestData = (testData - minVals) / ranges
result = kNN(normDataSet, labels, normTestData, 2)
print(result)
调用库
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)
聚类------KNN的更多相关文章
- KNN和Kmeans聚类有什么不同?
这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习.Kmeans是聚类算法,KNN是分类(或回归)算法. Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里 ...
- knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别
可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...
- 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 用scikit-learn学习谱聚类
在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...
- 谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...
- 用scikit-learn学习DBSCAN聚类
在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...
- DBSCAN密度聚类算法
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
随机推荐
- VB2015运行项目时出现的错误
错误:未能加载文件或程序集“System.Net.Http.Formatting, Version=5.2.3.0, Culture=neutral, PublicKeyToken=31bf3856a ...
- CF704D Captain America 上下界网络流
传送门 现在相当于说每一个条件都有一个染成红色的盾牌的数量限制\([l,r]\),需要满足所有限制且染成红色的盾牌数量最小/最大. 注意到一个盾牌染成红色对于一行和一列都会产生影响.如果选中一个物品对 ...
- 使用StringBuilder构建字符串
使用StringBuilder构建字符串确实可以提高效率,比“+”要高效不少.但使用时也有一些坑: 首先,我们指定一个StringBuilder,并设置其长度. StringBuilder build ...
- C# 获取系统字体方法
//需要引用命名空间 using System.Drawing; using System.Drawing.Text; //获取系统字体方法 public dynamic GetFontNames() ...
- 2019 世纪龙java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.世纪龙等公司offer,岗位是Java后端开发,因为发展原因最终选择去了世纪龙,入职一年时间了,也成为了面试官 ...
- pandas-05 map和replace操作
# pandas-05 map和replace操作 map可以做一个映射,对于操作大型的dataframe来说就非常方便了,而且也不容易出错.replace的作用是替换,这个很好理解. import ...
- VUE回顾基础3
1.方法 在vue模板里函数被定义为方法来使用,将函数放在methods对象里,作为一个属性,就可以在模板里使用它 this:在方法中this指向该方法所属的组件,可以使用this方文档data对象的 ...
- 英文FRAUNCE法国FRAUNCE单词
France Alternative forms Fraunce In Fraunce, the inhabitants of one city were driven out and forced ...
- ABAP-System Functions
ABAP_CALLSTACK ABAP_CRC64 ABAP_PRECOMPILED_HEADER_USAGE ABSTOR_TEST AB_CALL_LITL_CHECK AB_CALL_STACK ...
- ffmpeg 把视频转换为图片
ffmpeg -i "Tail of Hope.mp4" -r 1 -q:v 2 -f image2 pic-%03d.jpeg