import numpy as np
from math import sqrt
import operator as opt

def normData(dataSet):
maxVals = dataSet.max(axis=0)
minVals = dataSet.min(axis=0)
ranges = maxVals - minVals
retData = (dataSet - minVals) / ranges
return retData, ranges, minVals

def kNN(dataSet, labels, testData, k):
distSquareMat = (dataSet - testData) ** 2 # 计算差值的平方
distSquareSums = distSquareMat.sum(axis=1) # 求每一行的差值平方和
distances = distSquareSums ** 0.5 # 开根号,得出每个样本到测试点的距离
sortedIndices = distances.argsort() # 排序,得到排序后的下标
indices = sortedIndices[:k] # 取最小的k个
labelCount = {} # 存储每个label的出现次数
for i in indices:
label = labels[i]
labelCount[label] = labelCount.get(label, 0) + 1 # 次数加一
sortedCount = sorted(labelCount.items(), key=opt.itemgetter(1), reverse=True) # 对label出现的次数从大到小进行排序
return sortedCount[0][0] # 返回出现次数最大的label

if name == "main":
dataSet = np.array([[2, 3], [6, 8],[1,1],[3,4],[5,6]])
normDataSet, ranges, minVals = normData(dataSet)
labels = ['a', 'b','c','a','b']
testData = np.array([3.9, 5.5])
normTestData = (testData - minVals) / ranges
result = kNN(normDataSet, labels, normTestData, 2)
print(result)

调用库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs

X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]

X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]], cluster_std=[0.4, 0.2, 0.2, 0.2],
random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)
from sklearn import metrics
metrics.calinski_harabaz_score(X, y_pred)

聚类------KNN的更多相关文章

  1. KNN和Kmeans聚类有什么不同?

    这两种算法之间的根本区别是,Kmeans本质上是无监督学习而KNN是监督学习.Kmeans是聚类算法,KNN是分类(或回归)算法. Kmeans算法把一个数据集分割成簇,使得形成的簇是同构的,每个簇里 ...

  2. knn/kmeans/kmeans++/Mini Batch K-means/Affinity Propagation/Mean Shift/层次聚类/DBSCAN 区别

    可以看出来除了KNN以外其他算法都是聚类算法 1.knn/kmeans/kmeans++区别 先给大家贴个简洁明了的图,好几个地方都看到过,我也不知道到底谁是原作者啦,如果侵权麻烦联系我咯~~~~ k ...

  3. 机器学习(十)—聚类算法(KNN、Kmeans、密度聚类、层次聚类)

    聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分. 性能度量:类内相似度高,类间相似度低.两大类:1.有参考标签,外部指标:2.无参照,内部指标. 距离计算:非负性, ...

  4. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 用scikit-learn学习谱聚类

    在谱聚类(spectral clustering)原理总结中,我们对谱聚类的原理做了总结.这里我们就对scikit-learn中谱聚类的使用做一个总结. 1. scikit-learn谱聚类概述 在s ...

  6. 谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也 ...

  7. 用scikit-learn学习DBSCAN聚类

    在DBSCAN密度聚类算法中,我们对DBSCAN聚类算法的原理做了总结,本文就对如何用scikit-learn来学习DBSCAN聚类做一个总结,重点讲述参数的意义和需要调参的参数. 1. scikit ...

  8. DBSCAN密度聚类算法

    DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-M ...

  9. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

随机推荐

  1. lambd

    匿名函数 1.匿名函数格式 void test01() { []() { cout << "hello world" << endl; }(); } 2使用 ...

  2. linux 挂载新的硬盘

    linux 挂载新的硬盘 1.查看硬盘情况,物理盘和分区 fdisk -l 2.分区一个盘,sdb是个还没有分区的硬盘 fdisk /dev/sdb 输入 n p 1 w n 表示新建分区 p 表示分 ...

  3. Vue框架(三)——Vue项目搭建和项目目录介绍、组件、路由

    Vue项目环境搭建 1) 安装node,在官网下载好,然后在本地安装 官网下载安装包,傻瓜式安装:https://nodejs.org/zh-cn/ 2) 换源安装cnpm >: npm ins ...

  4. modbus汇总

    ModBus协议简介及移植到STM32单片机 https://blog.csdn.net/silent123go/article/details/92440091 Modbus测试工具ModbusPo ...

  5. Rust 智能指针(二)

    1. Rc<T> 引用计数指针 Rc<T> 是引用计数指针,可以使用clone使得指针所指向的数据具有多个所有者. enum List { Cons(i32, Rc<Li ...

  6. ASP.NET MVC 页面静态化操作的思路

    本文主要讲述了在asp.net mvc中,页面静态化的几种思路和方法.对于网站来说,生成纯html静态页面除了有利于seo外,还可以减轻网站的负载能力和提高网站性能.在asp.net mvc中,视图的 ...

  7. 小程序加入echart 图表

    github上的地址 https://github.com/ecomfe/echarts-for-weixin 复制到当前项目根目录下 添加展示bar图表例子的文件夹 index.json 中配置使用 ...

  8. SpringBoot的入门程序

    1. 创建一个springboot工程 可以参考springboot入门程序 2. 创建一个实体类 @Data //想相当于@Setter.@Getter和@ToString替代了setter.get ...

  9. dede自定义内容模型下,列表只显示10条的问题及解决方法

    <div class="zjtd-content-ld s-content"> {dede:arclist tagid='ld' row='100' pagesize= ...

  10. 英语eschaunge交易所

    eschaunge  Eschaunge是一个外文单词,名词译为交易所,交易,交换,兑换(率),动词译为兑换, 交换,互换,交换,调换.是Exchange的替代形式 中文名:交易所,交易,交换 外文 ...