小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\)​,且每个怪物血量均不相同,小豆手里有无限张“亵渎”。亵渎的效果是对所有的怪造成\(1\)点伤害,如果有怪死亡,则再次施放该法术。我们认为血量为\(0\)怪物死亡。

小豆使用一张 “亵渎”会获得一定的分数,分数计算如下,在使用一张“亵渎”之后,每一个被亵渎造成伤害的怪会产生\(x^k\),其中\(x\)是造成伤害前怪的血量为\(x\)和需要杀死所有怪物所需的“亵渎”的张数\(k\)。

对于\(100\%\)的数据,有\(m\leq50,n\leq10^{13}\)

首先我们发现这是一道语文题

大概意思是每一次使用亵渎都会得到\(\sum\limits_{i=1,i\in monster}^{n}hp(i)^k\)的贡献,其中\(k=m+1-\)结尾空位

我们发现暴力复杂度瓶颈在于求\(\sum\limits_{i=1}^{n}i^k\)这么个东西

然而它是一个\(k+1\)次多项式(我才懒得证),我们选\(k+2\)个点拉格朗日插值就好了

每次插值求出\(\sum\limits_{i=1}^{n}i^k\),再暴力把后面的空位置的贡献删去就好了

洛谷P4593 [TJOI2018]教科书般的亵渎的更多相关文章

  1. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

  2. 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】

    题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...

  3. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

  4. P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...

  5. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  6. 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎

    题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...

  7. p4593 [TJOI2018]教科书般的亵渎

    分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...

  8. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  9. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

随机推荐

  1. mac pe简单安装方法

    1.工具下载 TechTool Pro for mac V11.0.4:http://www.pc6.com/mac/112462.html 2.准备16g u盘 3.安装工具并按照注册码注册 在Te ...

  2. .Net轻松处理亿级数据--clickhouse及可视化界面安装介绍

    该篇内容由个人博客点击跳转同步更新!转载请注明出处! 前言 我是在17年就听说过Clickhouse,那时还未接触过亿数据的运算,那时我在的小公司对于千万数据的解决方案还停留在分库分表,最好的也是使用 ...

  3. sql server 下载安装标记

    SQL Server 2017 的各版本和支持的功能 https://docs.microsoft.com/zh-cn/sql/sql-server/editions-and-components-o ...

  4. Kubernetes 弹性伸缩全场景解析(三) - HPA 实践手册

    在上一篇文章中,给大家介绍和剖析了 HPA 的实现原理以及演进的思路与历程.本文我们将会为大家讲解如何使用 HPA 以及一些需要注意的细节. autoscaling/v1 实践 v1 的模板可能是大家 ...

  5. Centos7编译安装Nginx+keepalived

    一.安装环境.主机信息及软件版本 Nginx:1.12.2keepalived:2.0.12时间同步(同步后确认各服务器时间是否一致,不一致需要修改一下时区) 关闭防火墙 二.编译安装Nginx 1. ...

  6. 2019 北森java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.北森等公司offer,岗位是Java后端开发,因为发展原因最终选择去了北森,入职一年时间了,也成为了面试官,之 ...

  7. mysql报错com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException

    一.问题 运行java代码时报如下的错误: You have an error in your SQL syntax;Cause:com.mysql.jdbc.exceptions.jdbc4.MyS ...

  8. 解决U盘不能分配空间(windows下操作)

    亲测可行 1.WIN+R => cmd => diskpart命令进入工具. 2.使用LIST DISK查看所有磁盘,?提示所有命令. 3.SELECT DISK 1将磁盘聚焦到1号磁盘, ...

  9. jQuery AJAX方法详谈

    AJAX是与服务器交换数据并更新部分网页的技术,而无需重新加载整个页面. 下表列出了所有jQuery AJAX方法: 方法 描述 $.ajax() 执行异步AJAX请求 $.ajaxPrefilter ...

  10. 我脑中的JVM大全附带Java8的特性

    Java虚拟机-sun classic vm 世界上第一款商用的Java虚拟机. 只能使用纯解释器的方式来执行Java代码. Java虚拟机-ExactVM Exact Memory Manageme ...