【转】AXI_Lite 总线详解













input wire s00_axi_aclk,
input wire s00_axi_aresetn,
input wire [C_S00_AXI_ADDR_WIDTH- : ] s00_axi_awaddr,
input wire [ : ] s00_axi_awprot,
input wire s00_axi_awvalid,
output wire s00_axi_awready,
input wire [C_S00_AXI_DATA_WIDTH- : ] s00_axi_wdata,
input wire [(C_S00_AXI_DATA_WIDTH/)- : ] s00_axi_wstrb,
input wire s00_axi_wvalid,
output wire s00_axi_wready,
output wire [ : ] s00_axi_bresp,
output wire s00_axi_bvalid,
input wire s00_axi_bready,
input wire [C_S00_AXI_ADDR_WIDTH- : ] s00_axi_araddr,
input wire [ : ] s00_axi_arprot,
input wire s00_axi_arvalid,
output wire s00_axi_arready,
output wire [C_S00_AXI_DATA_WIDTH- : ] s00_axi_rdata,
output wire [ : ] s00_axi_rresp,
output wire s00_axi_rvalid,
input wire s00_axi_rready
没错笔者曾在《AXI总线概述》这节中提到了他们,这次通过源码分析再次隆重介绍它们。


always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 'b0 )
begin
slv_reg0 <= ;
slv_reg1 <= ;
slv_reg2 <= ;
slv_reg3 <= ;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
'h0:
for ( byte_index = ; byte_index <= (C_S_AXI_DATA_WIDTH/)-; byte_index = byte_index+ )
if ( S_AXI_WSTRB[byte_index] == ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
slv_reg0[(byte_index*) +: ] <= S_AXI_WDATA[(byte_index*) +: ];
end
'h1:
for ( byte_index = ; byte_index <= (C_S_AXI_DATA_WIDTH/)-; byte_index = byte_index+ )
if ( S_AXI_WSTRB[byte_index] == ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*) +: ] <= S_AXI_WDATA[(byte_index*) +: ];
end
'h2:
for ( byte_index = ; byte_index <= (C_S_AXI_DATA_WIDTH/)-; byte_index = byte_index+ )
if ( S_AXI_WSTRB[byte_index] == ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*) +: ] <= S_AXI_WDATA[(byte_index*) +: ];
end
'h3:
for ( byte_index = ; byte_index <= (C_S_AXI_DATA_WIDTH/)-; byte_index = byte_index+ )
if ( S_AXI_WSTRB[byte_index] == ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*) +: ] <= S_AXI_WDATA[(byte_index*) +: ];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end
for ( byte_index = ; byte_index <= (C_S_AXI_DATA_WIDTH/)-; byte_index = byte_index+ )
if ( S_AXI_WSTRB[byte_index] == ) begin
slv_reg0[(byte_index*) +: ] <= S_AXI_WDATA[(byte_index*) +: ];
end
其中,C_S_AXI_DATA_WIDTH的宏定义的值为32,也就是数据位宽,S_AXI_WSTRB就是写选通信号,S_AXI_WDATA就是写数据信号。
存在于for循环中的最关键的一句:
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
当byte_index = 0的时候这句话就等价于:
slv_reg0[7:0] <= S_AXI_WDATA[7:0];
当byte_index = 1的时候这句话就等价于:
slv_reg0[15:8] <= S_AXI_WDATA[15:8];
当byte_index = 2的时候这句话就等价于:
slv_reg0[23:16] <= S_AXI_WDATA[23:16];
当byte_index = 3的时候这句话就等价于:
slv_reg0[31:24] <= S_AXI_WDATA[31:24];
也就是说,只有当写选通信号为1时,它所对应S_AXI_WDATA的字节才会被读取。
读懂了这段话之后,我们就知道了,如果我们想得到PS写到总线上的数据,我们只需要读取slv_reg0的值即可。
那如果,我们想写数据到总线让PS读取该数据,我们该怎么做呢?我们继续来看有关RADTA读数据代码:
// Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 'b0 )
begin
axi_rdata <= ;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end
观察可知,当PS读取数据时,程序会把reg_data_out复制给axi_rdata(RADTA读数据)。我们继续追踪reg_data_out:
always @(*)
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
'h0 : reg_data_out <= slv_reg0;
'h1 : reg_data_out <= slv_reg1;
'h2 : reg_data_out <= slv_reg2;
'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= ;
endcase
end
和前面分析的一样此时通过判断axi_awaddr[3:2]的值来判断将那个值给reg_data_out上,同样当PS调用读取函数时,这里axi_awaddr[3:2]默认是0,所以我们只需要把slv_reg0替换成我们自己数据,就可以让PS通过总线读到我们提供的数据。
这里可能有的读者会问了,slv_reg0不是总线写过来的数据吗?因为笔者说过这个程序是Vivado为我们提供的例子,它这么做无非是想验证我写出去的值和我读进入的值相等。但是他怎么写确实会对初看代码的人造成困扰。
最后笔者提出一个问题,为什么写通道要比读通道多了一列应答通道,这是为什么呢?
首先,你要知道这个应答信号是干什么用的?

写应答,主要是回复主机你这个写过程是没有问题的,那读为什么不需要这个过程呢?

这时因为主机在读取数据时,从机可以直接通过读数据通道给主机反馈信息,因此就没有必要再来开辟一个单独的应答通道了。
小结:
如果我们想读AXI4_Lite总线上的数据时,只需关注slv_reg的数据,我们可自行添加一段代码,如:
reg [:]rlcd_rgb;
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 'b0 )
begin
rlcd_rgb <= 'd0;
end
else
begin
rlcd_rgb <= slv_reg0[:];
end
end
assign lcd_rgb = rlcd_rgb;
如果我们想对AXI4_Lite信号写数据时,我们只需修改对reg_data_out的赋值,如:
//写总线测试修改!!!!!!!!!
wire[:]wlcd_xy;// = {10'd0,lcd_xy};
assign wlcd_xy = {'d0,lcd_xy};
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*)
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
'h0 : reg_data_out <= wlcd_xy;//slv_reg0;
'h1 : reg_data_out <= slv_reg1;
'h2 : reg_data_out <= slv_reg2;
'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= ;
endcase
end
最后强调下如果我们自定义的IP的地址被映射为0x43C00000,那么我们Xil_Out32(0x43C00000,Value)写的就是slv_reg0的值。如果地址偏移4位,如Xil_Out32(0x43C00000 + 4,Value) 写的就是slv_reg1的值,依次类推。
目前这里只有4个寄存器,那是因为之前选择的是4个,其实我们可以定义的更多:

#define XPAR_ MYIPFREQUENCY_ 0_ S00_ AXI_ BASEADDR 0x43C00000
#define XPAR_ MYIPFREQUENCY_ 0_ S00_ AXI_ HIGHADDR 0x43C0FFFF
理论上只要基地址 + 偏移量不要超过HIGHADDR即可。
添加 ila CORE




Step9:接下来依然是,右键单击Block文件,文件选择Generate the Output Products。
Step10:继续右键单击Block文件,选择Create a HDL wrapper,根据Block文件内容产生一个HDL 的顶层文件,并选择让vivado自动完成。
Setp11:单击Run Synthesis,如果有 Save 对话框弹出选择保存。
Setp12:综合结束后选择Synthesized Design option单击 OK。
Step13:在如下对话框中找到Unassigned debug nets(如果对话框没有出现选择 菜单->Window > Debug)

Step14:右击 Unassigned Debug Nets 选择Set up Debug… 之后单击 Next
Step15:删除红色错误的信号然后单击Next 到结束










后 VIVADO HW_ILA2 窗口采集到波形输出,可以看到 AXI总线的工作时序。

【转】AXI_Lite 总线详解的更多相关文章
- S02_CH12_ AXI_Lite 总线详解
S02_CH12_ AXI_Lite 总线详解 12.1前言 ZYNQ拥有ARM+FPGA这个神奇的架构,那么ARM和FPGA究竟是如何进行通信的呢?本章通过剖析AXI总线源码,来一探其中的秘密. 1 ...
- Linux设备驱动模型之platform(平台)总线详解
/********************************************************/ 内核版本:2.6.35.7 运行平台:三星s5pv210 /*********** ...
- [CAN].CAN总线详解
转自:https://blog.csdn.net/cheatscat/article/details/82886889 CAN(Controller Area Network)总线协议是由 BOSCH ...
- [LIN].LIN总线详解
转自:https://www.2cto.com/kf/201806/754227.html 参考:https://wenku.baidu.com/view/a9b08d786bd97f192379e9 ...
- [SDIO].SDIO总线详解
转自:https://blog.csdn.net/liuhan33025/article/details/51131848 SDIO接口是在SD内存卡接口的基础上发展起来的接口,SDIO接口兼容以前的 ...
- [I2C].I2C总线详解
转自:https://www.cnblogs.com/BitArt/archive/2013/05/27/3101037.html 一. 基本信息 1. 概述 I²C 是Inter-Integrate ...
- SPI总线协议及SPI时序图详解
SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接口.SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚 ...
- 迅为4412开发板Linux驱动教程——总线_设备_驱动注册流程详解
本文转自:http://www.topeetboard.com 视频下载地址: 驱动注册:http://pan.baidu.com/s/1i34HcDB 设备注册:http://pan.baidu.c ...
- SPI总线协议及SPI时序图详解【转】
转自:https://www.cnblogs.com/adylee/p/5399742.html SPI,是英语Serial Peripheral Interface的缩写,顾名思义就是串行外围设备接 ...
随机推荐
- Gin-Go学习笔记四:Gin-Web框架 文件的上传下载
文件的上传和下载 1->文件的上传 文件的上传,采用的是uploadify.js这个插件. 本事例实现的是上传图片文件,其他的文件上传也一样. 2->文件的下载 文件的下载有两个实现的方式 ...
- JDK安装—JAVA
下载JDK 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 关于版本选择需要注意的问题: 如果eclip ...
- testlink使用方法
1.测试项目管理 创建新项目: 类型设置成:活动的,公开的,才可以进行创建.创建完进入主页. 2.用户管理 注意:一般账号就是角色名,共6个角色,记住账号 ...
- MP构造器
官方文档:https://baomidou.gitee.io/mybatis-plus-doc/#/wrapper 实体包装器,用于处理 sql 拼接,排序,实体参数查询等! 补充说明: 使用的是数据 ...
- Linux计划任务管理
计划任务 类型: 一次性计划任务 周期性计划任务 一次性计划任务 前提: atd服务必须运行 [root@wei init.d]# yum -y install at ...
- ubuntu18 安装坑点记录(华硕飞行堡垒)
环境 电脑:华硕飞行堡垒FX53VD 显卡:集成显卡+NVIDIA显卡(linux版本很不友好) 镜像:ubuntu18.04.3 LTS 准备安装 * 制作启动盘(百度) * 设置U盘启动项:按F2 ...
- 阿里云 OSS文件存储挂到云服务器ESC文件系统中
ossfs能让您在Linux系统中,将对象存储OSS的存储空间(Bucket)挂载到本地文件系统中,您能够像操作本地文件一样操作OSS的对象(Object),实现数据的共享. 使用限制 ossfs使用 ...
- XGBoost使用教程(与sklearn一起使用)二
一.导入必要的工具包# 运行 xgboost安装包中的示例程序from xgboost import XGBClassifier # 加载LibSVM格式数据模块from sklearn.datase ...
- Python+OpenCV4:读写输入和输出的简单实践(图片、视频、摄像头)
典型的文件处理流程如下: 利用命令行参数 sys.argv 命令行参数是读取文件时常用的方式. 命令行参数保存在 sys.argv 的列表中,列表的第一个元素是脚本名称,后面的元素是命令行参数: 通过 ...
- Springboot JackSon
1. SpringBoot JSON工具包默认是Jackson,只需要引入spring-boot-starter-web依赖包,自动引入相应依赖包: <dependency> <gr ...