SimHash原理

1.SimHash背景

  • SimHash算法来自于 GoogleMoses Charikar发表的一篇论文“detecting near-duplicates for web crawling” ,其主要思想是降维, 将高维的特征向量映射成低维的特征向量,通过两个向量的Hamming Distance(汉明距离)来确定文章是否重复或者高度近似。
  • Hamming Distance: 又称汉明距离,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个数。也就是说,它就是将一个字符串变换成另外一个字符串所需要替换的字符个数。例如:1011101 与 1001001 之间的汉明距离是 2(异或)。至于我们常说的字符串编辑距离则是一般形式的汉明距离。这样通过比较文档之间simHash值的汉明距离,可以获取他们相似度。

2.如何比较两篇文章相似度呢?

  • 方法1:通过分词(这里用到jieba),得到一系列特征向量, 然后计算特征向量之间的距离(可以计算它们之间的欧氏距离、海明距离或者夹角余弦等等),从而通过距离的大小来判断两篇文章的相似度。
  • 方法2: 另外一种方案是传统hash,我们考虑为每一个web文档通过hash的方式生成一个指纹 (finger print)。

3.实现流程

  • 分词:对一段语句,进行分词,得到有效特征向量,然后给每一个特征向量设置1-5个级别代表权重(如果给定是一个文本特征向量可以通过TF-IDF)。
  • hash:通过hash函数计算各个特征向量的hash值。hash值为二进制数0 1 组成的n-bit签名。比如 “茶壶”的hash值为100101,“饺子”的hash值为101011.
  • 加权:在hash值的基础上,给所有特征向量进行加权,即W = Hash * weight,且遇到1则hash值和权值正相乘,遇到0则hash值和权值负相乘。例如给“茶壶”的hash值“100101”加权得 到:W= 100101*4 = 4 -4 -4 4 -4 4,给“饺子”的hash值“101011”加权得到:W=101011*5 = 5 -5 5 -5 5 5,其余特征向量类似此般操作。
  • 合并: 将上述各个特征向量的加权结果累加,变成只有一个序列串。拿前两个特征向量举例,例如“茶壶”的“4 -4 -4 4 -4 4”和“饺子”的“5 -5 5 -5 5 5”进行累加,得到“4+5 -4+-5 -4+5 4+-5 -4+5 4+5”,得到“9 -9 1 -1 1”。
  • 降维:对于n-bit签名的累加结果,如果大于0则置1,否则置0,从而得到该语句的simhash值,最后我们便可以根据不同语句simhash的海 明距离来判断它们的相似度。例如把上面计算出来的“9 -9 1 -1 1 9”降维(某位大于0记为1,小于0记为0),得到的01串为:“1 0 1 0 1 1”,从而形成它们的simhash签名。

4.python代码中的实现:

import json
import jieba
import jieba.analyse
import numpy as np class Simhash(object):
def simhash(self,content):
keylist = []
#jieba分词
seg = jieba.cut(content)
#去除停用词永祥
jieba.analyse.set_stop_words("stopwords.txt")
#得到前20个分词和tf-idf权值
keywords = jieba.analyse.extract_tags("|".join(seg),topK=20,withWeight=True,allowPOS=())
a = 0
for feature,weight in keywords:
weight = int(weight * 20)
feature = self.string_hash(feature)
temp = []
for i in feature:
if i == "1":
temp.append(weight)
else:
temp.append(-1*weight)
keylist.append(temp)
list1 = np.sum(np.array(keylist),axis=0)
if keylist == []:
return "00"
simhash = ""
#降维处理
for i in list1:
if i>0:
simhash += "1"
else:
simhash += "0"
return simhash
def string_hash(self,source):
if source == "":
return 0
else:
x = ord(source[0]) << 7
m = 1000003
mask = 2 ** 128 - 1
for c in source:
x = ((x * m) ^ ord(c)) & mask
x ^= len(source)
if x == -1:
x = -2
x = bin(x).replace('0b', '').zfill(64)[-64:]
return str(x) # x=str(bin(hash(source)).replace('0b','').replace('-','').zfill(64)[-64:])
# return x
  • 相似度比较
def hammingDis(s1,s2):
t1 = "0b" + s1
t2 = "0b" + s2
n = int(t1,2) ^ int(t2,2)
i = 0
while n:
n &= (n-1)
i += 1
print(i)
if i <= 18:
print("文本相似")
else:
print("文本不相似")
if __name__ == "__main__":
text1 = open("article1.txt","r",encoding="utf-8")
text2 = open("article2.txt","r",encoding="utf-8")
hammingDis(text1,text2)
text1.close()
text2.close()

5. simhash 模块

SimHash算法--文章相似度匹配的更多相关文章

  1. 彻底弄懂LSH之simHash算法

    马克·吐温曾经说过,所谓经典小说,就是指很多人希望读过,但很少人真正花时间去读的小说.这种说法同样适用于“经典”的计算机书籍. 最近一直在看LSH,不过由于matlab基础比较差,一直没搞懂.最近看的 ...

  2. 基于局部敏感哈希的协同过滤算法之simHash算法

    搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计, ...

  3. 海量数据去重之SimHash算法简介和应用

    SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或 ...

  4. 字符串匹配算法之SimHash算法

    SimHash算法 由于实验室和互联网基本没啥关系,也就从来没有关注过数据挖掘相关的东西.在实际工作中,第一次接触到匹配和聚类等工作,虽然用一些简单的匹配算法可以做小数据的聚类,但数据量达到一定的时候 ...

  5. 浅谈压缩感知(二十八):压缩感知重构算法之广义正交匹配追踪(gOMP)

    主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, g ...

  6. 浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)

    主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewis ...

  7. MLlearning(2)——simHash算法

    这篇文章主要讲simHash算法.这是一种LSH(Locality-Sensitive Hashing,局部敏感哈希)的简单实现.它是广泛用于数据去重的算法,可以用于相似网站.图片的检索.而且当两个样 ...

  8. (转)simhash算法原理及实现

    simhash是google用来处理海量文本去重的算法. google出品,你懂的. simhash最牛逼的一点就是将一个文档,最后转换成一个64位的字节,暂且称之为特征字,然后判断重复只需要判断他们 ...

  9. 浅谈压缩感知(二十三):压缩感知重构算法之压缩采样匹配追踪(CoSaMP)

    主要内容: CoSaMP的算法流程 CoSaMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 一.CoSaMP的算法流程 压缩采样匹配追踪(CompressiveS ...

随机推荐

  1. 字符串format()方法的基本使用

    <模板字符串>.format(<逗号分隔的参数>) 其中,模板字符串是一个由字符串和槽组成的字符串,用来控制字符串和变量的显示效果.槽用大括号({})表示,对应format() ...

  2. 11-赵志勇机器学习-DBSCAN聚类

    (草稿) 两点关系的三种定义: 1. 直接密度可达:A在B的邻域内: 2. 密度可达:AB之间存在,直接密度可达的点串: 3. 密度连接:AB之间存在点k,使得Ak和Bk都密度可达: 过程: 1. 对 ...

  3. 第二阶段冲刺(个人)——four

    今天的的计划:选择功能界面的背景设计,使得整体效果看上去吸引眼球. 昨天做了什么?选择功能界面的选择框排版设计. 遇到的困难: 还是js的函数 设计,思路不是很清晰.

  4. 数据结构——单链表(singly linked list)

    /* singlyLinkedList.c */ /* 单链表 */ /* 单链表是一种链式存取的数据结构,用一组地址任意的存储单元存放线性表中的数据元素. */ #include <stdio ...

  5. 图的遍历 | 1034 map处理输入数据,连通块判断

    这题写得比较痛苦.首先有点不在状态,其次题目比较难读懂. “Gang”成立的两个条件:①成员数大于两个  ②边权总和大于阈值K 首先,在录数据的时候通过map或者字符串哈希建立string到int的映 ...

  6. redis实现mysql的数据缓存

    环境设定base2 172.25.78.12 nginx+phpbase3 172.25.78.13 redis端base4 172.25.78.14 mysql端# 1.在base2(nginx+p ...

  7. JavaScriptDOM编程学习笔记(一)DOM概述

    首先介绍下DOM,一套对文档的内容进行抽象和概念化的方法.即Document Object Model,当创建了一个网页并加载到Web浏览器中时,DOM就把编写的网页转换为一个文档对象,而通过浏览器提 ...

  8. Ubuntu 修改apt-get源为阿里源

    原文件重命名备份 sudo mv /etc/apt/sources.list /etc/apt/source.list.bak 编辑源列表文件 sudo vim /etc/apt/sources.li ...

  9. Log4j之HelloWorld

    在编写项目的时候,我们一般都会用到日志记录,方便出错查找原因.首先我们需要了解什么是Log4j 1.使用maven建立工程,在pom.xml中加入如下: <dependency> < ...

  10. 备忘Sourcetree配置

    一. 设置用户名 对应路径:C:\Users\用户名\.gitconfig 二.验证账号 三.添加ssh key 创建ssh密码 保存key,路径:C:\Users\用户名\.ssh 配置Pagean ...