传送门


发现只有通项公式可以解决考虑通项公式

\(F_n = \frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n) = a\)

注意到根据二次互反律,在\(\mod 10^9+9\)意义下\(5\)存在二次剩余,所以先把\(\sqrt{5}\)对应的值算出来(实际上是\(383001016\))。

那么原式变为了\((\frac{1+\sqrt{5}}{2})^n - (\frac{1-\sqrt{5}}{2})^n = \sqrt{5}a\),\(x^n-y^n=a\)的方程好像还是不会解TAT

观察上面式子可以发现:\(\frac{1-\sqrt{5}}{2} = -\frac{1}{\frac{1 + \sqrt{5}}{2}}\),所以设\(\frac{1 + \sqrt{5}}{2} = x\),那么原式变为\(x - \frac{(-1)^n}{x} = \sqrt{5}a\)。

按照\(n\)的奇偶性讨论,可以得到一个一元二次方程,使用求根公式求出方程的解。注意到在求根公式中还有一个求\(\sqrt{\Delta}\)的操作,这里还需要计算一次二次剩余,如果这里二次剩余无解,那么方程就是无解的,否则就存在两个解。

然后我们最后的问题就是解出\((\frac{1 + \sqrt{5}}{2})^n = t\)的最小的\(n\),同时需要满足\(n\)是奇数或者是偶数。这里我们同样使用BSGS,只需要在分块的时候把块大小分成偶数,然后对于奇数和偶数分开考虑就可以了。

#include<bits/stdc++.h>
#include<tr1/unordered_map>
using namespace std;
using namespace std::tr1; const int MOD = 1e9 + 9;
int val , g , sqrt5 , inv2; int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD; b >>= 1;
}
return times;
} struct BSGS{
unordered_map < int , int > odd , even , all;
int T , powbs; void init(int base){
T = sqrt(MOD) + 1; if(T & 1) ++T;
powbs = poww(base , T);
int tms = 1;
for(int i = 0 ; i < T ; ++i , tms = 1ll * tms * base % MOD){
unordered_map < int , int > &now = i & 1 ? odd : even;
now[tms] = i; all[tms] = i;
}
} int calc(int ans , int val){
unordered_map < int , int > &now = val == 0 ? all : (val == 1 ? odd : even);
int tms = 1ll * powbs * poww(ans , MOD - 2) % MOD;
for(int i = 1 ; i <= T ; ++i , tms = 1ll * tms * powbs % MOD)
if(now.find(tms) != now.end())
return i * T - now[tms];
return 2e9 + 1;
}
}A , B; int findrt(){
int t = MOD - 1; vector < int > zys;
for(int i = 2 ; i * i <= t ; ++i)
if(t % i == 0){
zys.push_back(MOD / i);
while(t % i == 0) t /= i;
}
if(t - 1) zys.push_back(MOD / t);
for(int i = 2 ; ; ++i){
bool flg = 1;
for(int j = 0 ; j < zys.size() && flg ; ++j)
if(poww(i , zys[j]) == 1) flg = 0;
if(flg) return i;
}
} int main(){
cin >> val; g = findrt(); A.init(g); sqrt5 = poww(g , A.calc(5 , 0) / 2);
val = 1ll * val * sqrt5 % MOD; inv2 = poww(2 , MOD - 2);
B.init((1ll + sqrt5) * inv2 % MOD); int t = A.calc((1ll * val * val + MOD - 4) % MOD , 0) , ans = 2e9 + 1;
if(t % 2 == 0){
int sqt = poww(g , t / 2) , ans1 = 1ll * (val + sqt) * inv2 % MOD , ans2 = 1ll * (val - sqt + MOD) * inv2 % MOD;
ans = min(B.calc(ans1 , 1) , B.calc(ans2 , 1));
} t = A.calc((1ll * val * val + 4) % MOD , 0);
if(t % 2 == 0){
int sqt = poww(g , t / 2) , ans1 = 1ll * (val + sqt) * inv2 % MOD , ans2 = 1ll * (val - sqt + MOD) * inv2 % MOD;
ans = min(ans , min(B.calc(ans1 , 2) , B.calc(ans2 , 2)));
} if(ans == 2e9 + 1) puts("-1");
else cout << ans;
return 0;
}

BZOJ5104 Fib数列 二次剩余、BSGS的更多相关文章

  1. bzoj5104 Fib数列(BSGS+二次剩余)

    快AFO了才第一次写二次剩余的题…… 显然应该将Fn写成通项公式(具体是什么写起来不方便而且大家也都知道),设t=((1+√5)/2)n,T=√5N,然后可以得到t-(-1)t/t=√5N,两边同时乘 ...

  2. 【BZOJ5104】Fib数列(BSGS,二次剩余)

    [BZOJ5104]Fib数列(BSGS,二次剩余) 题面 BZOJ 题解 首先求出斐波那契数列的通项: 令\(A=\frac{1+\sqrt 5}{2},B=\frac{1-\sqrt 5}{2}\ ...

  3. bzoj5104: Fib数列

    Description Fib数列为1,1,2,3,5,8... 求在Mod10^9+9的意义下,数字N在Fib数列中出现在哪个位置 无解输出-1 Input 一行,一个数字N,N < = 10 ...

  4. BZOJ5104 Fib数列(二次剩余+BSGS)

    5在1e9+9下有二次剩余,那么fib的通项公式就有用了. 已知Fn,求n.注意到[(1+√5)/2]·[(1-√5)/2]=-1,于是换元,设t=[(1+√5)/2]n,原式变为√5·Fn=t-(- ...

  5. @bzoj - 5104@ Fib数列

    目录 @description@ @solution@ @accepted code@ @details@ @description@ Fib数列为1,1,2,3,5,8... 求在Mod10^9+9 ...

  6. FIB数列

    斐波那契级数除以N会出现循环,此周期称为皮萨诺周期. 下面给出证明 必然会出现循环 这是基于下面事实: 1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+ ...

  7. 动态规划之Fib数列类问题应用

    一,问题描述 有个小孩上楼梯,共有N阶楼梯,小孩一次可以上1阶,2阶或者3阶.走到N阶楼梯,一共有多少种走法? 二,问题分析 DP之自顶向下分析方式: 爬到第N阶楼梯,一共只有三种情况(全划分,加法原 ...

  8. UVaLive 3357 Pinary (Fib数列+递归)

    题意:求第 k 个不含前导 0 和连续 1 的二进制串. 析:1,10,100,101,1000,...很容易发现长度为 i 的二进制串的个数正好就是Fib数列的第 i 个数,因为第 i 个也有子问题 ...

  9. 【bzoj5118】Fib数列2 费马小定理+矩阵乘法

    题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据 ...

随机推荐

  1. 【JZOJ6229】【20190621】san

    题目 \(n\)个点\(m\)条边的有向图,每个点有点权 你可以选择拓扑序的一个区间的 最大化点权和 $n \le 50  , m \le \frac{n*(n-1)}{2} , 0 \le |a_i ...

  2. uni-app input text-indent失效解决

    有两种方法去解决 第一种 input { padding-left: 10upt } 第二种 input { display: block }

  3. 【洛谷】P1032 字串变换

    题目地址:https://www.luogu.org/problemnew/show/P1032 洛谷训练场BFS的训练题呀. “BFS不就是用队列的思想去遍历一切情况嘛.我已经不是小孩子了,我肯定能 ...

  4. Tkinter 之爬虫框架项目实战

    一.效果图 二.源码 ''' 测试内容页爬取''' def test_content_url(self): try: url = self.test_url_var.get().strip() ite ...

  5. git 全量同步分支

    当前分支是maser分支,我想将stable分支上的代码完全覆盖brush分支,首先切换到brush分支. git reset --hard origin/stable 执行上面的命令后brush分支 ...

  6. ZooKeeper和ZAB协议

    前言 ZooKeeper是一个提供高可用,一致性,高性能的保证读写顺序的存储系统.ZAB协议为ZooKeeper专门设计的一种支持数据一致性的原子广播协议. 演示环境 $ uname -a Darwi ...

  7. 范仁义html+css课程---7、表单

    范仁义html+css课程---7.表单 一.总结 一句话总结: 表单标签的话主要掌握form标签.input标签(以及input标签的不同的type值).select标签.textarea等标签,及 ...

  8. 2-5 【ngFor指令 事件的处理和样式绑定】顶部导航支持选中状态

    索引的获取 first和last是布尔类型的 奇数偶数 []方括号表示的是数据绑定 ()圆括号就是事件绑定 . 开始代码 我们要实现的功能是菜单点击后,就变色 这样我们就得到了索引. 新建一个clas ...

  9. LeetCode_434. Number of Segments in a String

    434. Number of Segments in a String Easy Count the number of segments in a string, where a segment i ...

  10. Centos7.3使用脚本自动静默安装oracle11.2.0.4数据库

    一直想着写一个脚本实现自动化安装oracle数据库.以下内容实验过几次了,可能还存在些小问题,如果在跑以下脚本中遇到问题,自己仔细排查即可 挣扎了好久,总算还是没实现,目前只能通过依次执行多个脚本来安 ...