泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射。理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即。因此,当四旋翼飞行器发射时,我们可以检测到测量的加速度下降到与当前施加的推力相对应的值。
B. Recovery and Initialization Steps
张宁 Perception-aware Receding Horizon Navigation for MAVs
"链接:https://pan.baidu.com/s/1uBMIFMFudZ6FXs4lSnUOLw
提取码:7br1"
To reach a given destination safely and accurately,a micro aerial vehicle needs to be able to avoid obstaclesand minimize its state estimation uncertainty at the sametime. To achieve this goal, we propose a perception-awarereceding horizon approach. In our method, a single forward-looking camera is used for state estimation and mapping.Using the information from the monocular state estimation andmapping system, we generate a library of candidate trajectoriesand evaluate them in terms of perception quality, collisionprobability, and distance to the goal. The best trajectory toexecute is then selected as the one that maximizes a reward function based on these three metrics. To the best of our knowledge, this is the first work that integrates active vision within a receding horizon navigation framework for a goal reaching task. We demonstrate by simulation and real-world experiments on an actual quadrotor that our active approach leads to improved state estimation accuracy in a goal-reaching task when compared to a purely-reactive navigation system,especially in difficult scenes (e.g., weak texture).
为了安全准确地到达给定目的地,微型飞行器需要能够避开障碍物并同时最小化其状态估计不确定性。为了实现这一目标,我们提出了一种感知感知的后退视界方法。 在我们的方法中,单个前视摄像机用于状态估计和映射。使用来自单眼状态估计和映射系统的信息,我们生成候选轨迹库并根据感知质量,碰撞概率和到目标的距离来评估它们。然后选择最佳执行轨迹作为基于这三个度量最大化奖励函数的轨迹。 就我们所知,这是第一项将主动视觉与后退地平线导航框架相结合以实现目标任务的工作。我们通过仿真和现实世界实验证明,与纯反应式导航系统相比,我们的主动方法可以在达到目标的任务中提高状态估计精度,尤其是在困难场景(例如,弱纹理)中。
泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs的更多相关文章
- 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
- 泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System
Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Cam ...
- 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis
http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...
- 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps
Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...
- 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...
- 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area
A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...
- 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions
张宁 Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...
- 泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications
eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications eRTIS - 用于机器人应用 ...
随机推荐
- 面试官常问的20道Java题目(附答案)-来自Java1234
1. 以下代码的输出结果是(A) int i =3; i = i++; System.out.println(i); A .3 B.4 C.5 a=b++是先将b值赋值给a后b再自增. 2. Ma ...
- 洛谷 P1439 【模板】最长公共子序列 题解
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...
- Notepad++ 编译运行java,c,c++
1.Java NPP_SAVE cd $(CURRENT_DIRECTORY) D:\tibco\bw6\tibcojre64\1.8.0\bin\javac.exe "$(FILE_NAM ...
- noi.ac #37 dp计数
#include<algorithm> #include<cstring> #include<cstdio> #include<iostream> ty ...
- 洛谷P1040 加分二叉树题解
dp即可 \(f[i][j]\)表示i到j的加分 相当于区间dp了 #include<cstdio> using namespace std; int v[50]; int f[55][5 ...
- flask使用模板
flask常用代码模板 from flask import Flask, request,jsonify import requests app = Flask(__name__) @app.rout ...
- 34、spark1.5.1
一.Spark 1.4.x的新特性 1.Spark Core 1.1 提供REST API供外界开发者获取Spark内部的各种信息(jobs / stages / tasks / storage in ...
- (21)打鸡儿教你Vue.js
组件化思想: 组件化实现功能模块的复用 高执行效率 开发单页面复杂应用 组件状态管理(vuex) 多组件的混合使用 vue-router 代码规范 vue-router <template> ...
- Matlab画图的输出格式
利用Matlab命令,可以输出.eps, .pdf格式的图形.有时候,在图形窗口直接保存会导致图形不完整,这时,可以用如下命令代替: saveas(p1, 't1.eps'); saveas(p1, ...
- Android Studio导入google training example gradle失败
Error:Unable to tunnel through proxy. Proxy returns "HTTP/1.1 400 Bad Request 每次从github的Google ...