【转载】 我的Machine Learning学习之路
原文地址:
https://www.cnblogs.com/steven-yang/p/5857964.html
----------------------------------------------------------------------------------------------------------
从2016年年初,开始用python写一个简单的爬虫,帮我收集一些数据。
6月份,开始学习Machine Learning的相关知识。
9月开始学习Spark和Scala。
现在想,整理一下思路。
先感谢下我的好友王峰给我的一些建议。他在Spark和Scala上有一些经验,让我前进的速度加快了一些。
学习算法
作为一个程序猿,以前多次尝试看过一些机器学习方面的书,其过程可以说是步履阑珊,碰到的阻力很大。
主要原因是,读这些机器学习的书,需要有一些数学方面的背景。
问题就在这些数学背景上,这些背景不仅仅是数学技巧,也有一些共识。对于缺乏这些背景的我,即使一个简单的公式,也有时会感到困惑。
如果你像我一样是一个程序猿,我建议读Peter Harrington写的Machine Learning in Action (中文书名是《机器学习实战》)。
这本书是以开发者的知识背景来写的,并且提供的python代码可以下载,方便开发人员理解。
我写了一些博文,主要作用是帮助我理解学习的算法。大部分写的不好,后来我自己都看不懂。以后慢慢修正一下。
机器学习实战 - 读书笔记(03) - 决策树
机器学习实战 - 读书笔记(04) - 朴素贝叶斯
机器学习实战 - 读书笔记(05) - Logistic回归
机器学习实战 - 读书笔记(06) – SVM支持向量机
机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
机器学习实战 - 读书笔记(08) - 预测数值型数据:回归
机器学习实战 - 读书笔记(10) - 利用K-均值聚类算法对未标注数据分组
机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析
机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
机器学习实战 - 读书笔记(14) - 利用SVD简化数据
学习算法的Level
Level 1: 了解如何使用算法
- Level 2: 了解算法的正确使用场景
正确的使用一个算法,需要经验和对算法理论的了解。
我以前有些这方面的经验,很多错误在于不正确地使用了算法。
当我们编程序给别人用时:需要理解算法
最低要求,也要有一些基本的统计知识。需要实现算法
实现算法一般比较简单,需要注意性能和精度。
基本上这部分在实现好后,比较稳定。需要实现将用户数据应用到算法上的过程。
这是程序员主要干的工作,接口、性能上的考虑很多。需要理解用户的使用场景。
这部分价值很大。
一方面,写单元测试是不可避免的,理解用户的场景才能写出有效的单元测试程序。
另外,会有很多处理客户问题的工作,也是长经验的机会。
- Level 3: 了解算法的后面的数学理论
有人觉得这个用处不大。我觉得了解数学理论,可以:- 成为真正的行家
- 未来的路还很远,怎么能戛然而止!
- 使用算法来帮助自己的一些事情,或者实现一个新的算法。
- 现在人工智能的潜力很大,可以自己好好玩玩。
学习python
在数据量不大的情况下(几个G),单机上就可以很好跑机器学习的程序。
这时,Python的用途就很大,不仅有已经实现好的算法,也可以实现爬虫,从网上获取数据。
学习Scala和函数式编程
对于大数据处理来说,Spark和Scala结合是现在的大趋势。
我写的博文有:
学习Scala: 初学者应该了解的知识
函数式编程 : 一个程序猿进化的故事
Scala underscore的用途
不变(Invariant), 协变(Covarinat), 逆变(Contravariant) : 一个程序猿进化的故事
Scala Collection简介
Scala on Visual Studio Code
学习Spark架构
我写的博文有:
Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境
Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用
Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用
Spark集群 + Akka + Kafka + Scala 开发(4) : 开发一个Kafka + Spark的应用
学习在Spark上的机器学习项目开发经验
学习更多的算法
蒙特卡洛树算法
成为Spark的Contributer
成为Spark的Contributer是件很cool的事。
- 可以读读Spark的代码,从中应该可以增长不少。
- 然后,尝试修一些Spark的Bugs。
深度学习
路还很长。
----------------------------------------------------------------------------------------------------------
【转载】 我的Machine Learning学习之路的更多相关文章
- 我的Machine Learning学习之路
从2016年年初,开始用python写一个简单的爬虫,帮我收集一些数据. 6月份,开始学习Machine Learning的相关知识. 9月开始学习Spark和Scala. 现在想,整理一下思路. 先 ...
- [Machine Learning]学习笔记-Logistic Regression
[Machine Learning]学习笔记-Logistic Regression 模型-二分类任务 Logistic regression,亦称logtic regression,翻译为" ...
- Machine Learning 学习笔记
点击标题可转到相关博客. 博客专栏:机器学习 PDF 文档下载地址:Machine Learning 学习笔记 机器学习 scikit-learn 图谱 人脸表情识别常用的几个数据库 机器学习 F1- ...
- [Python & Machine Learning] 学习笔记之scikit-learn机器学习库
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...
- Machine Learning 学习笔记1 - 基本概念以及各分类
What is machine learning? 并没有广泛认可的定义来准确定义机器学习.以下定义均为译文,若以后有时间,将补充原英文...... 定义1.来自Arthur Samuel(上世纪50 ...
- Coursera 机器学习 第6章(上) Advice for Applying Machine Learning 学习笔记
这章的内容对于设计分析假设性能有很大的帮助,如果运用的好,将会节省实验者大量时间. Machine Learning System Design6.1 Evaluating a Learning Al ...
- machine learning学习笔记
看到Max Welling教授主页上有不少学习notes,收藏一下吧,其最近出版了一本书呢还,还没看过. http://www.ics.uci.edu/~welling/classnotes/clas ...
- [Machine Learning]学习笔记-线性回归
模型 假定有i组输入输出数据.输入变量可以用\(x^i\)表示,输出变量可以用\(y^i\)表示,一对\(\{x^i,y^i\}\)名为训练样本(training example),它们的集合则名为训 ...
- 吴恩达Machine Learning学习笔记(一)
机器学习的定义 A computer program is said to learn from experience E with respect to some class of tasks T ...
随机推荐
- Java集合之整体概述
Java集合与数组是相似的,都用于保存一组对象,并提供一些操作来管理对象.然而,不同于数组的是,当添加或删除元素时集合的大小是可以自动变化的.Java集合不可以存放基本类型数据(比如int,long或 ...
- 关于Bigdecimal的问题
Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算.双精度浮点型变量double可以处理16位有效数.在实际应用中,需要对更大或者更小的数进行 ...
- 行为型模式(三) 迭代器模式(Iterator)
一.动机(Motivate) 在软件构建过程中,集合对象内部结构常常变化各异.但对于这些集合对象,我们希望在不暴露其内部结构的同时,可以让外部客户代码透明地访问其中包含的元素:同时这种"透明 ...
- PHP——json_encode转码保留中文
前言 特殊的情况,特殊对待吧.转码为GBK再json_encode会报错,因为json_encode是只支持utf8的. 代码 文档 | https://www.php.net/manual/en/f ...
- 十.Protobuf3 JSON映射
Protobuf3 JSON映射 proto 3支持JSON中的规范编码,使得系统之间更容易共享数据.下表按类型对编码进行了描述. 如果JSON编码的数据中缺少一个值,或者如果它的值为null,那么当 ...
- Tomcat默认连接超时时间
秒=1小时 2. 在web.xml中通过参数指定: xml 代码 <session-config> <session-timeout>30</sessio ...
- 图中长度为k的路径的计数
题意 给出一个有向图,其中每条边的边长都为1.求这个图中长度恰为 $k$ 的路劲的总数.($1 \leq n \leq 100, 1 \leq k\leq 10^9$) 分析 首先,$k=1$ 时答案 ...
- Django REST framework认证权限和限制 源码分析
1.首先 我们进入这个initial()里面看下他内部是怎么实现的. 2.我们进入里面看到他实现了3个方法,一个认证,权限频率 3.我们首先看下认证组件发生了什么 权限: 啥都没返回,self.per ...
- 【贪心】Allowance POJ 3040
题目链接:http://poj.org/problem?id=3040 题目大意:你有n种不同面值的硬币,面值为vi的有bi个."硬币的面额均匀地分配下一个更大的面额",即下一个更 ...
- 初始SpringBoot
导入依赖 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http:/ ...