Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法。

基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐。

图片来源

程序中用到的数据都存在MySQL数据库中,计算结果也存在MySQL中的对应用户表中。

package com.mahout.helloworlddemo;

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashSet;
import java.util.List; import org.apache.mahout.cf.taste.impl.model.jdbc.MySQLJDBCDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.JDBCDataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; import com.mahout.util.DBUtil;
import com.mysql.jdbc.jdbc2.optional.MysqlDataSource; /**
*
*@author wxisme
*@time 2015-9-13 下午6:25:26
*/
public class RecommenderIntroFromMySQL { public static void main(String[] args) throws Exception { //连接MySQL
MysqlDataSource dataSource = new MysqlDataSource();
dataSource.setServerName("localhost");
dataSource.setUser("root");
dataSource.setPassword("1234");
dataSource.setDatabaseName("mahoutdemo"); //获取数据模型
JDBCDataModel dataModel = new MySQLJDBCDataModel(dataSource, "taste_preferences", "user_id", "item_id", "preference","time"); DataModel model = dataModel; //计算相似度
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
//计算阈值
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2,similarity,model); //推荐
Recommender recommender = new GenericUserBasedRecommender(model,neighborhood,similarity); Connection con = DBUtil.getConnection();
Statement stmt = con.createStatement(); //获取每个用户的推荐数据并存入数据库 for(int i=0; i<5; i++) {
List<RecommendedItem> recommendations = recommender.recommend(i, 3); String tableName = "user_" + i; for (RecommendedItem recommendation : recommendations) { //如果是第一次推荐就创建该用户的数据表
if(!doesTableExist(tableName)) { String createSQL = "create table " + tableName
+ " (item_id bigint primary key,value float);";
stmt.execute(createSQL);
} String insertSQL = "insert into " + tableName + " values ("
+ recommendation.getItemID() + "," + recommendation.getValue() + " );"; //插入用户的推荐数据
stmt.execute(insertSQL); System.out.println(recommendation);
}
} } /**
* 是否存在这个数据表
* @param tablename
* @return
* @throws SQLException
*/
public static Boolean doesTableExist(String tablename) throws SQLException {
HashSet<String> set = new HashSet<String>();
Connection con = DBUtil.getConnection();
DatabaseMetaData meta = con.getMetaData();
ResultSet res = meta.getTables(null, null, null,
new String[]{"TABLE"});
while (res.next()) {
set.add(res.getString("TABLE_NAME"));
}
DBUtil.close(res, con);
return set.contains(tablename);
} }

测试数据:

1,101,5
1,102,3
1,103,2.5
2,101,2
2,102,2.5
2,103,5
2,104,2
3,101,2.5
3,104,4
3,105,4.5
3,107,5
4,101,5
4,103,3
4,104,4.5
4,106,4
5,101,4
5,102,3
5,103,2
5,104,4
5,105,3.5
5,106,4

运行结果:

更多Mahout和协同过滤算法的介绍与分析:

http://www.cnblogs.com/dlts26/archive/2011/08/23/2150225.html

http://www.tuicool.com/articles/FzmQziz

http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/

Mahout实现基于用户的协同过滤算法的更多相关文章

  1. 案例:Spark基于用户的协同过滤算法

    https://mp.weixin.qq.com/s?__biz=MzA3MDY0NTMxOQ==&mid=2247484291&idx=1&sn=4599b4e31c2190 ...

  2. 基于用户的协同过滤的电影推荐算法(tensorflow)

    数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012 ...

  3. 【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)

    好早的时候就打算写这篇文章,可是还是參加阿里大数据竞赛的第一季三月份的时候实验就完毕了.硬生生是拖到了十一假期.自己也是醉了... 找工作不是非常顺利,希望写点东西回想一下知识.然后再攒点人品吧,仅仅 ...

  4. Spark 基于物品的协同过滤算法实现

    J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...

  5. 基于物品的协同过滤算法(ItemCF)

    最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法.ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通 ...

  6. 推荐召回--基于用户的协同过滤UserCF

    目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? ...

  7. 基于用户的协同过滤电影推荐user-CF python

    协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前 ...

  8. (数据挖掘-入门-3)基于用户的协同过滤之k近邻

    主要内容: 1.k近邻 2.python实现 1.什么是k近邻(KNN) 在入门-1中,简单地实现了基于用户协同过滤的最近邻算法,所谓最近邻,就是找到距离最近或最相似的用户,将他的物品推荐出来. 而这 ...

  9. 基于用户的协同过滤(UserCF)

随机推荐

  1. fail-fast和fail-safe

    一:快速失败(fail—fast) 在用迭代器遍历一个集合对象时,如果遍历过程中对集合对象的内容进行了修改(增加.删除.修改),则会抛出Concurrent Modification Exceptio ...

  2. Javascript 你不知道的事,好吧,是我不知道的事

    NaN表示一个不能产生正常结果的运算结果.它不等于任何值,包括它自己.可以用isNaN(number)来检测. 同Java中的字符串一样,JS中的字符串是不可变的.也就是说一旦字符串被创建,就无法改变 ...

  3. WordCount示例深度学习MapReduce过程

    转自: http://blog.csdn.net/yczws1/article/details/21794873 . 我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测 ...

  4. selenium测试(Java)--浏览器控制(四)

    1. 控制浏览器窗口大小 1 package com.test.window; 2 3 import org.openqa.selenium.Dimension; 4 import org.openq ...

  5. free 和delete 把指针怎么啦?

    别看 free 和 delete 的名字恶狠狠的(尤其是 delete),它们只是把指针所指的内存给 释放掉,但并没有把指针本身干掉. 发现指针 p 被 free 以后其地址仍然不变(非 NULL), ...

  6. 基本上每个应用程序领域的程序员都有使用 C++

    C++ 的使用基本上每个应用程序领域的程序员都有使用 C++. C++ 通常用于编写设备驱动程序和其他要求实时性的直接操作硬件的软件. C++ 广泛用于教学和研究. 任何一个使用苹果电脑或 Windo ...

  7. (转) 从ffmpeg中提取出YUV数据

    有时需要从ffmpeg中提取出YUV数据用作预览,另存什么的. ffmpeg是先解码成YUV, 再以这个YUV作为输入进行编码,所以YUV数据有两种:  解码后的YUV数据, 以及  编码重建的YUV ...

  8. Yii2框架加入API Modules

    一.环境部署 1. read fucking Yii Documents. http://www.yiichina.com/doc/guide/2.0 2. 了解依赖注入模式 Java描写叙述: ht ...

  9. ASP.NET中相对路径的使用总结

    如果有一个网站上的图片的路径是这样的: http://localhost:2008/websit1/images/1.jpg websit1表示的是虚拟路径或者是站点 在asp.net中,如果我们在. ...

  10. ChemOffice Professional 16.0新增了哪些功能

    ChemOffice Professional 16.0是为终极化学和生物组件设计,可满足化学家和生物学家的需求.ChemOffice Professional帮助科学家有效地检索数据库,包括SciF ...