Mahout中对协同过滤算法进行了封装,看一个简单的基于用户的协同过滤算法。

基于用户:通过用户对物品的偏好程度来计算出用户的在喜好上的近邻,从而根据近邻的喜好推测出用户的喜好并推荐。

图片来源

程序中用到的数据都存在MySQL数据库中,计算结果也存在MySQL中的对应用户表中。

package com.mahout.helloworlddemo;

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashSet;
import java.util.List; import org.apache.mahout.cf.taste.impl.model.jdbc.MySQLJDBCDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.JDBCDataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity; import com.mahout.util.DBUtil;
import com.mysql.jdbc.jdbc2.optional.MysqlDataSource; /**
*
*@author wxisme
*@time 2015-9-13 下午6:25:26
*/
public class RecommenderIntroFromMySQL { public static void main(String[] args) throws Exception { //连接MySQL
MysqlDataSource dataSource = new MysqlDataSource();
dataSource.setServerName("localhost");
dataSource.setUser("root");
dataSource.setPassword("1234");
dataSource.setDatabaseName("mahoutdemo"); //获取数据模型
JDBCDataModel dataModel = new MySQLJDBCDataModel(dataSource, "taste_preferences", "user_id", "item_id", "preference","time"); DataModel model = dataModel; //计算相似度
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
//计算阈值
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2,similarity,model); //推荐
Recommender recommender = new GenericUserBasedRecommender(model,neighborhood,similarity); Connection con = DBUtil.getConnection();
Statement stmt = con.createStatement(); //获取每个用户的推荐数据并存入数据库 for(int i=0; i<5; i++) {
List<RecommendedItem> recommendations = recommender.recommend(i, 3); String tableName = "user_" + i; for (RecommendedItem recommendation : recommendations) { //如果是第一次推荐就创建该用户的数据表
if(!doesTableExist(tableName)) { String createSQL = "create table " + tableName
+ " (item_id bigint primary key,value float);";
stmt.execute(createSQL);
} String insertSQL = "insert into " + tableName + " values ("
+ recommendation.getItemID() + "," + recommendation.getValue() + " );"; //插入用户的推荐数据
stmt.execute(insertSQL); System.out.println(recommendation);
}
} } /**
* 是否存在这个数据表
* @param tablename
* @return
* @throws SQLException
*/
public static Boolean doesTableExist(String tablename) throws SQLException {
HashSet<String> set = new HashSet<String>();
Connection con = DBUtil.getConnection();
DatabaseMetaData meta = con.getMetaData();
ResultSet res = meta.getTables(null, null, null,
new String[]{"TABLE"});
while (res.next()) {
set.add(res.getString("TABLE_NAME"));
}
DBUtil.close(res, con);
return set.contains(tablename);
} }

测试数据:

1,101,5
1,102,3
1,103,2.5
2,101,2
2,102,2.5
2,103,5
2,104,2
3,101,2.5
3,104,4
3,105,4.5
3,107,5
4,101,5
4,103,3
4,104,4.5
4,106,4
5,101,4
5,102,3
5,103,2
5,104,4
5,105,3.5
5,106,4

运行结果:

更多Mahout和协同过滤算法的介绍与分析:

http://www.cnblogs.com/dlts26/archive/2011/08/23/2150225.html

http://www.tuicool.com/articles/FzmQziz

http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy2/

Mahout实现基于用户的协同过滤算法的更多相关文章

  1. 案例:Spark基于用户的协同过滤算法

    https://mp.weixin.qq.com/s?__biz=MzA3MDY0NTMxOQ==&mid=2247484291&idx=1&sn=4599b4e31c2190 ...

  2. 基于用户的协同过滤的电影推荐算法(tensorflow)

    数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012 ...

  3. 【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)

    好早的时候就打算写这篇文章,可是还是參加阿里大数据竞赛的第一季三月份的时候实验就完毕了.硬生生是拖到了十一假期.自己也是醉了... 找工作不是非常顺利,希望写点东西回想一下知识.然后再攒点人品吧,仅仅 ...

  4. Spark 基于物品的协同过滤算法实现

    J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...

  5. 基于物品的协同过滤算法(ItemCF)

    最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法.ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通 ...

  6. 推荐召回--基于用户的协同过滤UserCF

    目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? ...

  7. 基于用户的协同过滤电影推荐user-CF python

    协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前 ...

  8. (数据挖掘-入门-3)基于用户的协同过滤之k近邻

    主要内容: 1.k近邻 2.python实现 1.什么是k近邻(KNN) 在入门-1中,简单地实现了基于用户协同过滤的最近邻算法,所谓最近邻,就是找到距离最近或最相似的用户,将他的物品推荐出来. 而这 ...

  9. 基于用户的协同过滤(UserCF)

随机推荐

  1. Ubuntu下安装Apache

    Ubuntu为我们提供了 su apt-get install 命令,通过它你可以很方便地安装一些软件,这些软件是放在Ubuntu放置在各个地方的服务器上面,如果你想安装的软件是比较常见的,一般都可以 ...

  2. Android——数据存储:手机外部存储 SD卡存储

    xml <EditText android:layout_width="match_parent" android:layout_height="wrap_cont ...

  3. Html5之web workers多线程

    Web Workers 是 HTML5 提供的一个javascript多线程解决方式,我们能够将一些大计算量的代码交由web Worker执行而不冻结用户界面. 1.首先看一个实例: 1)js文件(t ...

  4. FTP原理

    1.1.1 ftp的主动模式和被动模式 扩展重要. FTP是仅基于TCP的服务,不支持UDP. 与众不同的是FTP使用2个端口,一个数据端口和一个命令端口(也可叫做控制端口).通常来说这两个端口是21 ...

  5. 异常:Error:Execution failed for task ':app:compileDebugJavaWithJavac'. > Compilation failed; see the compiler error output for details.

    碰到这个异常我也是挺无语的,因为Android Studio根本不会提示你详细的错误信息. 我们来看看这个博主:http://blog.csdn.net/runner__1/article/detai ...

  6. R笔记4:ggplot绘制商务图表--玫瑰图

    我们说Excel有难度的图表,可以考虑ggplot2是否更方便,本帖的例子就是用ggplot做玫瑰图. Excel做玫瑰图有一定难度,可以使用雷达图或圆环图来构建,我的博客上曾有多个帖子讨论这个,见 ...

  7. View与Model绑定注意事项 (视图无数据显示)

    Qt 中视图与模型绑定时,模型必须使用new来创建.否则刚开始初始化的时候,视图无数据显示,或者后期视图不能随着模型的改变而改变. 具体原因:我猜测是局部变量生命周期的问题.new 的变量在堆中,除非 ...

  8. Maven学习日记(二)---MAVEN创建多模块的项目

    手动构建多模块maven项目,这个simple-parent项目下有两个子模块,一个是jar包型的simple-weather和一个war型的simple-webapp1.创建一个父的simple-p ...

  9. 解决ubuntu下mysql不能远程连接数据库的问题【转】

    Ubuntu10.04上自带的MySQL,执行了root@ubuntu:~#sudo apt-get install mysql安装完mysql-server 启动mysqlroot@ubuntu:~ ...

  10. CentOS运行级别和开机过程

    linux运行级别: 1)0:关机 2)1:单用户 3)2:多用户状态没有网络服务 4)3:多用户状态有网络服务 5)4:系统未使用保留给用户 6)5:图形界面 7)6:系统重启 注:常用运行级别是3 ...