数字逻辑课程的自由设计中,我编写了一个3x3开窗的中值滤波器,处理一副128*128像素值的图像,并且最终可以在FPGA上板实现。

中值滤波的本质就是对于一个n*n的窗口,将其内部的值进行排序,取中位数作为中间的点的值。通过中值滤波可以很好的减弱图片的噪声,并且报纸边缘不变。

中值滤波的硬件实现主要分为三个模块:开窗模块、中值计算模块与存储器模块。

【1】开窗模块主要需要利用循环同步计数器来实现,分别进行列和位置的循环,从而达到最终开窗的目的。

开窗模块的代码如下:

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////
// Q为0~127计数的循环计数器,pos为1~128的循环计数器 //
// clk为输入时钟, rst_n为低电平有效的reset信号,en为高电平有效的使能端 //
//////////////////////////////////////////////////////////////////////////////
module Counter14(clk, rst_n, en, mm, aa, bb, cc, dd, ee, ff, gg, hh, jj); input clk, rst_n, en; output [:]mm,aa,bb,cc,dd,ee,ff,gg,hh,jj;
wire [:]m_,Q_,a2,b2,c2,d2,e2,f2,g2,h2,j2;
wire [:]m,Q,pos,pos2,a,b,c,d,e,f,g,h,j;
wire [:]i; wire posm_w; not not1(posm_w, pos2[]);
assign Q_ = Q[:]; // 13位0~127计数器 // assign shamt2 = shamt[13:0];// 13位移位数据
assign mm = m[:];
assign a2 = a[:];
assign b2 = b[:];
assign c2 = c[:];
assign d2 = d[:];
assign e2 = e[:];
assign f2 = f[:];
assign g2 = g[:];
assign h2 = h[:];
assign j2 = j[:]; wire Q0, Q1, Q2, Q3, Q4, Q5;
wire m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
wire [:]a_,b_,c_,d_,e_,f_,g_,h_,j_;
wire [:]ya,yb,yc,yd,ye,yf,yg,yh,yj; T_trigger t1(.clk(clk), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q0));
T_trigger t2(.clk(Q0), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q1));
T_trigger t3(.clk(Q1), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q2));
T_trigger t4(.clk(Q2), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q3));
T_trigger t5(.clk(Q3), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q4));
T_trigger t6(.clk(Q4), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN(Q5));
T_trigger t7(.clk(Q5), .rst_n(rst_n), .EN(en), .Q(Q[]), .QN()); T_trigger mm1(.clk(clk), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m0));
T_trigger mm2(.clk(m0), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m1));
T_trigger mm3(.clk(m1), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m2));
T_trigger mm4(.clk(m2), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m3));
T_trigger mm5(.clk(m3), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m4));
T_trigger mm6(.clk(m4), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m5));
T_trigger mm7(.clk(m5), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m6));
T_trigger mm8(.clk(m6), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m7));
T_trigger mm9(.clk(m7), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m8));
T_trigger mm10(.clk(m8), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m9));
T_trigger mm11(.clk(m9), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m10));
T_trigger mm12(.clk(m10), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m11));
T_trigger mm13(.clk(m11), .rst_n(rst_n), .EN(en), .Q(m[]), .QN(m12));
T_trigger mm14(.clk(m12), .rst_n(rst_n), .EN(en), .Q(m[]), .QN()); // 将Q拓展为16位
assign Q[:] = 'b000000000;
// 将m拓展为16位
assign m[:] = 'b00;
// 得到行数
assign i[:] = m[:];
// 由行数得到偏移量
// assign shamt[15:0] = {2'b00,i[6:0],7'b0000000}; // 构造1~128循环的位置信号
add_16_prefix add1(.A(Q), .B('b0000000000000001), .Cin_s(1'b0), .S(pos), .Cout()); // 计算该像素点序号1~128*128
// add_16_prefix add2(.A(m), .B(16'b0000000000000001), .Cin_s(1'b0), .S(m_1), .Cout()); // 计算输出地址
// add_16_prefix add3(.A(m_1), .B(16'b0000000010000001), .Cin_s(1'b0), .S(output_des), .Cout()); add_16_prefix add5(.A(pos), .B('b0000000000000001), .Cin_s(1'b0), .S(pos2), .Cout()); // 计算开窗地址
assign a_ = m;
add_16_prefix add02(.A(a_), .B('b0000000000000001), .Cin_s(1'b0), .S(b_), .Cout());
add_16_prefix add03(.A(b_), .B('b0000000000000001), .Cin_s(1'b0), .S(c_), .Cout());
add_16_prefix add04(.A(a_), .B('b0000000010000000), .Cin_s(1'b0), .S(d_), .Cout());
add_16_prefix add05(.A(d_), .B('b0000000000000001), .Cin_s(1'b0), .S(e_), .Cout());
add_16_prefix add06(.A(e_), .B('b0000000000000001), .Cin_s(1'b0), .S(f_), .Cout());
add_16_prefix add07(.A(d_), .B('b0000000010000000), .Cin_s(1'b0), .S(g_), .Cout());
add_16_prefix add08(.A(g_), .B('b0000000000000001), .Cin_s(1'b0), .S(h_), .Cout());
add_16_prefix add09(.A(h_), .B('b0000000000000001), .Cin_s(1'b0), .S(j_), .Cout()); // 超出地址都指向0
genvar u;
generate
for (u = ; u < ; u = u + )
begin : layer0
and ora(a[u], ~a_[], a_[u]);
and orb(b[u], ~b_[], b_[u]);
and orc(c[u], ~c_[], c_[u]);
and ord(d[u], ~d_[], d_[u]);
and ore(e[u], ~e_[], e_[u]);
and orf(f[u], ~f_[], f_[u]);
and org(g[u], ~g_[], g_[u]);
and orh(h[u], ~h_[], h_[u]);
and orj(j[u], ~j_[], j_[u]);
end
endgenerate genvar u2;
generate
for (u2 = ; u2 < ; u2 = u2 + )
begin : layer1
and aa1(ya[u2], posm_w, a2[u2]);
and aa2(yb[u2], posm_w, b2[u2]);
and aa3(yc[u2], posm_w, c2[u2]);
and aa4(yd[u2], posm_w, d2[u2]);
and aa5(ye[u2], posm_w, e2[u2]);
and aa6(yf[u2], posm_w, f2[u2]);
and aa7(yg[u2], posm_w, g2[u2]);
and aa8(yh[u2], posm_w, h2[u2]);
and aa9(yj[u2], posm_w, j2[u2]);
end
endgenerate genvar u3;
generate
for (u3 = ; u3 < ; u3 = u3 + )
begin : layer2
and an1(aa[u3], rst_n, ya[u3]);
and an2(bb[u3], rst_n, yb[u3]);
and an3(cc[u3], rst_n, yc[u3]);
and an4(dd[u3], rst_n, yd[u3]);
and an5(ee[u3], rst_n, ye[u3]);
and an6(ff[u3], rst_n, yf[u3]);
and an7(gg[u3], rst_n, yg[u3]);
and an8(hh[u3], rst_n, yh[u3]);
and an9(jj[u3], rst_n, yj[u3]);
end
endgenerate endmodule

其中为了保持整体的一致性,我们所有模块的代码都尽量使用门级的、结构化语言来描写。在开窗模块中,还用到了T触发器这一子模块,其代码如下所示:

`timescale 1ns / 1ps

module T_trigger(clk, rst_n, EN, Q, QN);

    input clk, rst_n, EN;
output reg Q;
output QN; assign QN = ~Q; always@(posedge clk or negedge rst_n)
begin
if(!rst_n)
Q <= ;
else if(EN)
Q <= ~Q;
else;
end endmodule

【2】取中值模块我们采用三分法的原理,对于每一行进行比较,然后再通过一轮比较得到最终结果。对于9个数字取中位数一共只用到了21个两两比较器。具体的算法如下图中所示:

比较器模块的代码如下:

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////// //
////////////////////////////////////////////////////////////////////////////////// module median_comparator(
A,B,C,D,E,F,G,H,I,
median
);
input [:]A,B,C,D,E,F,G,H,I;
output [:]median;
wire [:]max1,max2,max3,med1,med2,med3,min1,min2,min3;
wire [:]max_2,med_2,min_2;
//第一层
comparator_3_3 mycomparator_3_3_1(A,B,C,max1,med1,min1);
comparator_3_3 mycomparator_3_3_2(D,E,F,max2,med2,min2);
comparator_3_3 mycomparator_3_3_3(G,H,I,max3,med3,min3); //第二层
comparator_3_3 mycomparator_3_3_max(.A(max1),.B(max2),.C(max3),.max(),.med(),.min(max_2));
comparator_3_3 mycomparator_3_3_med(.A(med1),.B(med2),.C(med3),.max(),.med(med_2),.min());
comparator_3_3 mycomparator_3_3_min(.A(min1),.B(min2),.C(min3),.max(min_2),.med(),.min()); //第三层
comparator_3_3 mycomparator_3_3_median(.A(max_2),.B(med_2),.C(min_2),.max(),.med(median),.min());
endmodule

【3】最后是一个自己写的9输入9输出的RAM,可以达到在同一个时钟上升沿来到时,同步提取所有开窗地址对应的数据:

`timescale 1ns / 1ps
////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// module ram(
CLK,rst_n,a, b, c, d, e, f, g, h, j,
A,B,C,D,E,F,G,H,J
);
input CLK,rst_n;
input [:]a, b, c, d, e, f, g, h, j;//输入地址
output [:]A,B,C,D,E,F,G,H,J;//输出数据 reg [:]RAM[:];//深度65536,位宽8 always @(posedge CLK or negedge rst_n)
begin
if (!rst_n)
begin
A <= 'b0;
B <= 'b0;
C <= 'b0;
D <= 'b0;
E <= 'b0;
F <= 'b0;
G <= 'b0;
H <= 'b0;
J <= 'b0;
end
else
A <= RAM[a];
B <= RAM[b];
C <= RAM[c];
D <= RAM[d];
E <= RAM[e];
F <= RAM[f];
G <= RAM[g];
H <= RAM[h];
J <= RAM[j];
end
endmodule

最终我们在Matlab中手动对一幅图像添加噪声,然后再分别比较Matlab自带的中值滤波器滤波后的结果,与我们的硬件实现的中值滤波器的结果。结果比较如下:

可以看出,硬件实现的中值滤波器与Matlab自带的中值滤波效果无差别,最终两者的像素值平均值之差为0.034,误差小于0.1%,因此可以视为高度有效的硬件实现。

3x3开窗中值滤波器的FPGA硬件实现的更多相关文章

  1. 图像处理:卷积模块FPGA 硬件加速

    本文记录了利用FPGA加速图像处理中的卷积计算的设计与实现.实现环境为Altera公司的Cyclone IV型芯片,NIOS II软核+FPGA架构. 由于这是第一次设计硬件加速模块,设计中的瑕疵以及 ...

  2. 干货分享,FPGA硬件系统的设计技巧

    PGA的硬件设计不同于DSP和ARM系统,比较灵活和自由.只要设计好专用管脚的电路,通用I/O的连接可以自己定义.因此,FPGA的电路设计中会有一些特殊的技巧可以参考. 1. FPGA管脚兼容性设计 ...

  3. Verilog代码和FPGA硬件的映射关系(四)

    其实在FPGA的开发中理想情况下FPGA之间的数据要通过寄存器输入.输出,这样才能使得延时最小,从而更容易满足建立时间要求.我们在FPGA内部硬件结构中得知,IOB内是有寄存器的,且IOB内的寄存器比 ...

  4. Verilog代码和FPGA硬件的映射关系(一)

    代码和硬件之间的映射关系是一个很奇妙的过程,也展现出人类的智慧.单片机内部的硬件结构都是固定的,无法改变,我们通过代码操作着寄存器的读写,来执行各种复杂的任务.FPGA的硬件结构并不像单片机一样是固定 ...

  5. Verilog代码和FPGA硬件的映射关系(三)

    组合逻辑和FPGA之间的映射关系我们知道了,那时序逻辑和FPGA之间又是一种怎样的映射关系呢?我们就以前面寄存器章节的例子来向大家说明,也一同把当时为什么用异步复位更节约资源的原因告诉大家.我们先来看 ...

  6. Verilog代码和FPGA硬件的映射关系(二)

    大家可能会有这样的疑问,我们编写的Verilog代码最终会在FPGA上以怎样的映射关系来实现功能呢?我们以一个最简单的组合逻辑与门为例来向大家说明.RTL代码如下所示: //------------- ...

  7. FPGA硬件加速

    FPGA市场占有率最高的两大公司Xilinx和Altera. 查找表(Look-Up-Table)简称为LUT,LUT本质上就是一个RAM.目前FPGA中多使用4输入的LUT,所以每一个LUT可以看成 ...

  8. Verilog代码和FPGA硬件的映射关系(五)

    既然我们可以指定寄存器放在IOB内,那我们同样也可以指定PLL的位置.首先要确保我们有多个PLL才行.如图1所示,我们所使用的EP4CE10F17C8芯片刚好有两个. 图 1 为了演示这个例子,我们使 ...

  9. eFPGA与FPGA SoC,谁将引领下一代可编程硬件之潮流?|半导体行业观察

    eFPGA:冉冉升起的新星 eFPGA即嵌入式FPGA(embedded FPGA),是近期兴起的新型电路IP. 随着摩尔定律越来越接近瓶颈,制造ASIC芯片的成本越来越高.因此,设计者会希望ASIC ...

随机推荐

  1. MongoDB命令及其MongoTemplate的混合讲解

    前言 前面讲解了如何在springboot中集成mongodb,本文将讲解mongodb命令操作及其MongoTemplate的使用.穿插的目的在于不用先去寻找mongodb的命令又去寻找在java中 ...

  2. Asp.Net MVC 开发技巧(二)

    Linq查询 Linq的使用大体分为两种:语句表达式   和  方法 首先,我们要在控制器中定义好context private ApplicationDbContext db = new Appli ...

  3. PHP面试常用算法(推荐)

    一.冒泡排序 基本思想: 对需要排序的数组从后往前(逆序)进行多遍的扫描,当发现相邻的两个数值的次序与排序要求的规则不一致时,就将这两个数值进行交换.这样比较小(大)的数值就将逐渐从后面向前面移动. ...

  4. [COGS 2064]爬山

    2064. 爬山 ★☆   输入文件:mountain.in   输出文件:mountain.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 球有一天走在街上. 一个健 ...

  5. 【转】多线程Core Data

    原文地址:http://www.cocoanetics.com/2012/07/multi-context-coredata/ Multi-Context CoreData When you star ...

  6. iOS中 Proxy和的delegate区别

    在ios中使用proxy代理模式,经常容易和delegate委托模式混淆. 委托模式(delegate),是简单的强大的模式,可让一个对象扮演另外对象的行为.委托对象保持到另外对象的引用,并在适当的时 ...

  7. jquery实现的时间轴

    代码 样式文件style.css 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ...

  8. spring的权限控制,过滤器

    spring的过滤器可以实现登录状态问题 1.创建一个AccessFilter类,基础代码 package com.ujia.util.access; import javax.servlet.htt ...

  9. 第04章-VTK基础(7)

    [译者:这个系列教程是以Kitware公司出版的<VTK User's Guide -11th edition>一书作的中文翻译(出版时间2010年.ISBN: 978-1-930934- ...

  10. Mac安装软件时提示已损坏的解决方法

    问题描述 最近安装从网上下载的软件,安装完之后打开提示xxx已损坏,打不开,软件无法打开. 其实,这是新系统(macOS Sierra 10.12.X)新安全机制的锅,它默认不允许用户自行下载安装应用 ...