POJ 1691 Painting a Board(状态压缩DP)
Description

To color the board, the APM has access to a set of brushes. Each brush has a distinct color C. The APM picks one brush with color C and paints all possible rectangles having predefined color C with the following restrictions:
To avoid leaking the paints and mixing colors, a rectangle can only be painted if all rectangles immediately above it have already been painted. For example rectangle labeled F in Figure 1 is painted only after rectangles C and D are painted. Note that each rectangle must be painted at once, i.e. partial painting of one rectangle is not allowed.
You are to write a program for APM to paint a given board so that the number of brush pick-ups is minimum. Notice that if one brush is picked up more than once, all pick-ups are counted.
Input
Note that:
- Color-code is an integer in the range of 1 .. 20.
- Upper left corner of the board coordinates is always (0,0).
- Coordinates are in the range of 0 .. 99.
- N is in the range of 1..15.
Output
Sample Input
1
7
0 0 2 2 1
0 2 1 6 2
2 0 4 2 1
1 2 4 4 2
1 4 3 6 1
4 0 6 4 1
3 4 6 6 2
Sample Output
3
思路:
1. 拓扑排序加深搜
2. 拓扑排序加广搜
3. 状态压缩DP. 设 dp[s][i] 表示当前状态为 s 时, 刚画完第 i 个矩形所用的最少画笔数. s = [1, 1<<15), s 的二进制表示中, 第 i 位 为1 表示第 i 个矩形已经被涂完色.
dp[news][i] = min(dp[news][i], dp[olds][j]+1) if color[i] != color[j]
= min(dp[olds][j]) if color[i] == color[j]
其中, news = (olds | 1<<i)
上述状态转移方程的意思是, 要计算 dp[s][i] 的值, 那么考虑当前所有 dp[olds][j], 其中 s = (olds|1<<i), 假如 j 的颜色和 i 的颜色相同, 这不需要另拿画笔, 否则, 画笔数加 1
当然, 对 i 进行涂色需要满足 i 的直接前驱都已被涂完
总结:
1. 这道题近似于暴力破解, 枚举所有状态集合的所有状态, 在某个状态 s 下, 以 s 中以涂色的某个矩形为支点来更新一个还未被涂色的点
2. 第 48 行代码错过一次, 把 i 写成了 j
3. 第 45 行很精髓, 我本打算用一个 for 循环进行判断的
4. 第 44, 48 行, 体现了 (1) 的思想, 即以 k 为支点来更新 i
代码:
#include <iostream>
using namespace std; class tangle {
public:
int x1, y1, x2, y2;
int color;
tangle(int _x1, int _y1, int _x2, int _y2):x1(_x1), y1(_y1), x2(_x2), y2(_y2) {}
tangle() {
tangle(0, 0, 0, 0);
}
};
const int INF = 0X3F3F3F3F;
int M, N;
tangle tangles[20];
int dp[1<<15][20];
int up[20]; bool isUpper(int i, int j) {
if(tangles[i].x2 != tangles[j].x1) return false;
if(tangles[i].y1 >= tangles[j].y2) return false;
if(tangles[i].y2 <= tangles[j].y1) return false;
return true;
}
void pre_process() {
memset(up, 0, sizeof(up));
for(int i = 1; i <= N; i ++) {
for(int j = 1; j <= N; j ++) {
if(isUpper(i, j))
up[j] = (up[j]|(1<<(i-1)));
}
} memset(dp, 0x3f, sizeof(dp));
for(int i = 1; i <= N; i ++)
if(up[i] == 0)
dp[1<<(i-1)][i] = 1; }
int mainFunc() {
int END = (1<<N) -1;
for(int s = 1; s <= END; s ++) { // 从状态 s 导出 dp[s][i], 当前 s 第 i 个矩形不能被涂色
for(int i = 1; i <= N; i ++) { // 将要给第 i 个矩形涂色
if(s&(1<<(i-1)) ) continue; // 状态 s 中, 对应第 i 个矩形已经被涂完了
if((s&up[i]) != up[i]) continue; // 确保 i 的直接前驱都已涂完颜色
for(int k = 1; k <= N; k ++) {
if(!(s&(1<<(k-1)))) continue;
int news = (s|1<<(i-1)); // update 新的 dp[][]
if(tangles[i].color != tangles[k].color)
dp[news][i] = min(dp[news][i], dp[s][k]+1);
else
dp[news][i] = min(dp[news][i], dp[s][k]);
}
}
}
int ans = INF;
for(int i = 1; i <= N; i ++) {
ans = min(ans, dp[END][i]);
}
return ans;
}
int main() {
freopen("E:\\Copy\\ACM\\poj\\1691\\in.txt", "r", stdin);
cin >> M;
while( M -- >= 1) {
cin >> N;
for(int i = 1; i <= N; i ++) {
scanf("%d%d%d%d%d", &tangles[i].x1, &tangles[i].y1, &tangles[i].x2, &tangles[i].y2, &tangles[i].color);
}
pre_process();
cout << mainFunc() << endl;
}
return 0;
}
POJ 1691 Painting a Board(状态压缩DP)的更多相关文章
- poj 3311 floyd+dfs或状态压缩dp 两种方法
Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6436 Accepted: 3470 ...
- POJ 2686_Traveling by Stagecoach【状态压缩DP】
题意: 一共有m个城市,城市之间有双向路连接,一个人有n张马车票,一张马车票只能走一条路,走一条路的时间为这条路的长度除以使用的马车票上规定的马车数,问这个人从a出发到b最少使用时间. 分析: 状态压 ...
- poj 2411 Mondriaan's Dream_状态压缩dp
题意:给我们1*2的骨牌,问我们一个n*m的棋盘有多少种放满的方案. 思路: 状态压缩不懂看,http://blog.csdn.net/neng18/article/details/18425765 ...
- poj 1185 炮兵阵地 [经典状态压缩DP]
题意:略. 思路:由于每个大炮射程为2,所以如果对每一行状态压缩的话,能对它造成影响的就是上面的两行. 这里用dp[row][state1][state2]表示第row行状态为state2,第row- ...
- POJ 1038 Bug Integrated Inc(状态压缩DP)
Description Bugs Integrated, Inc. is a major manufacturer of advanced memory chips. They are launchi ...
- poj 2411 Mondriaan's Dream(状态压缩dP)
题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...
- poj 2686 Traveling by Stagecoach ---状态压缩DP
题意:给出一个简单带权无向图和起止点,以及若干张马车车票,每张车票可以雇到相应数量的马. 点 u, v 间有边时,从 u 到 v 或从 v 到 u 必须用且仅用一张车票,花费的时间为 w(u, v) ...
- POJ 1185 炮兵阵地(状态压缩DP)
题解:nState为状态数,state数组为可能的状态 代码: #include <map> #include <set> #include <list> #inc ...
- POJ 3254 Corn Fields(状态压缩DP)
题目大意:给出一个M*N的矩阵,元素为0表示这个地方不能种玉米,为1表示这个地方能种玉米,现在规定所种的玉米不能相邻,即每行或者没列不能有相邻的玉米,问一共有多少种种植方法. 举个例子: 2 3 1 ...
随机推荐
- static使用实例
public class LocationActivity extends Activity { //一个Activity传值到service public static String workid ...
- FreeRTOS 任务栈大小确定及其溢出检测
以下转载自安富莱电子: http://forum.armfly.com/forum.php FreeRTOS 的任务栈设置不管是裸机编程还是 RTOS 编程,栈的分配大小都非常重要. 局部变量,函数调 ...
- poj2452
题意:就是说给你一段区间,要你找出一段最长的区间,在这段区间的所有数都大于区间的第一个数.小于区间的最后一个数......输出区间的长度,若是长度为0则输出-1. 4 5 4 3 6 4 6 5 4 ...
- ios UIImageView异步加载网络图片2
//1. NSData dataWithContentsOfURL // [self.icon setImage:[UIImage imageWithData:[NSData dataWithCont ...
- 个推-推送hello world
最近项目中的一个百度推送真是把我搞的有点头大,真的是很垃圾,到达率又低,还特么遇上停止维护了... 所以项目决定转用别的推送平台,现在改用个推,官方文档写的很好,除了刚下载下来,折腾了一阵子,不过很快 ...
- 利用GDB对程序进行调试
第一章初涉调试会话 调试工具 GDB,Unix下最常用的调试工具 DDD,基于GUI的调试器,大多数工具都是GDB的GUI前端. Eclipse,IDE也是一种调试工具 atoi( )把字符串变为整数 ...
- uboot中CMD的实现
CMD配置位于config_cmd_default.h configs/at91/sam9g10ek.h 头文件位于include/command.h 41 struct cmd_tbl_s { ...
- Hibernate使用createSqlQuery进行模糊查询时找不到数据
1. 首先明确一点,使用createSqlQuery如下两种方式的占位符都可以使用,这个在官方的文档可以查到. 注意使用模糊查询时,赋值两边不可以添加单引号. Query query = sess.c ...
- WPF路由事件二:路由事件的三种策略
一.什么是路由事件 路由事件是一种可以针对元素树中的多个侦听器而不是仅仅针对引发该事件的对象调用处理程序的事件.路由事件是一个CLR事件. 路由事件与一般事件的区别在于:路由事件是一种用于元素树的事件 ...
- sparkr基本操作1
由于装的sparkr是1.4版本的,老版本的很多函数已经不再适用了. 在2台服务器的组成的集群中测试了一版数据,熟悉下这个api的基本操作. libpath <- .libPaths() li ...