1、不平衡数据分类问题

对于非平衡级分类超平面,使用不平衡SVC找出最优分类超平面,基本的思想是,我们先找到一个普通的分类超平面,自动进行校正,求出最优的分类超平面

测试代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
rng = np.random.RandomState(0)
n_samples_1 = 1000
n_samples_2 = 100
X = np.r_[1.5 * rng.randn(n_samples_1, 2),0.5 * rng.randn(n_samples_2, 2) + [2, 2]]
y = [0] * (n_samples_1) + [1] * (n_samples_2)
print X
print y clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - clf.intercept_[0] / w[1]
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y) ww = wclf.coef_[0]
wa = -ww[0] / ww[1]
wyy = wa * xx - wclf.intercept_[0] / ww[1] h0 = plt.plot(xx, yy, 'k-', label='no weights')
h1 = plt.plot(xx, wyy, 'k--', label='with weights')
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.legend() plt.axis('tight')
plt.show()
运行结果如下:

2、回归问题

支持分类的支持向量机可以推广到解决回归问题,这种方法称为支持向量回归
支持向量分类所产生的模型仅仅依赖于训练数据的一个子集,因为构建模型的成本函数不关心在超出边界范围的点,类似的,通过支持向量回归产生的模型依赖于训练数据的一个子集,因为构建模型的函数忽略了靠近预测模型的数据集。
有三种不同的实现方式:支持向量回归SVR,nusvr和linearsvr。linearsvr提供了比SVR更快实施但只考虑线性核函数,而nusvr实现比SVR和linearsvr略有不同。
 
测试代码
import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel() y[::5] += 3 * (0.5 - np.random.rand(8)) svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1)
svr_lin = SVR(kernel='linear', C=1e3)
svr_poly = SVR(kernel='poly', C=1e3, degree=2)
y_rbf = svr_rbf.fit(X, y).predict(X)
y_lin = svr_lin.fit(X, y).predict(X)
y_poly = svr_poly.fit(X, y).predict(X) lw = 2
plt.scatter(X, y, color='darkorange', label='data')
plt.hold('on')
plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model')
plt.plot(X, y_lin, color='c', lw=lw, label='Linear model')
plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
plt.legend()
plt.show()

运行结果如下:

												

机器学习算法--svm实战的更多相关文章

  1. 【机器学习算法基础+实战系列】SVM

    概述 支持向量机是一种二分类模型,间隔最大使它有别于感知机.支持向量机学习方法由简至繁的模型:线性可分支持向量机(linear support vector machine in linearly s ...

  2. 数学之路(3)-机器学习(3)-机器学习算法-SVM[7]

    SVM是新近出现的强大的数据挖掘工具,它在文本分类.手写文字识别.图像分类.生物序列分析等实际应用中表现出非常好的性能.SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集. 图 ...

  3. 机器学习算法 --- SVM (Support Vector Machine)

    一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的 ...

  4. 机器学习 - 算法 - SVM 支持向量机

    SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要 ...

  5. 数学之路(3)-机器学习(3)-机器学习算法-SVM[5]

    svm小结 1.超平面 两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面.在进行分类的时候,我们将数据点  x 代入  f(x)  中,如果得到的结果小于 0 ,则赋予其类别 -1 ,如果 ...

  6. 数学之路(3)-机器学习(3)-机器学习算法-SVM[9]

    我们应用SVM的非线性分类功能对手写数字进行识别,我们在这应用poly做为非线性核 svm = mlpy.LibSvm(svm_type='c_svc', kernel_type='poly',gam ...

  7. 【机器学习算法基础+实战系列】KNN算法

    k 近邻法(K-nearest neighbor)是一种基本的分类方法 基本思路: 给定一个训练数据集,对于新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例多数属于某个类别,就把输 ...

  8. 机器学习 - 算法 - SVM 支持向量机 Py 实现 / 人脸识别案例

    SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy i ...

  9. 【机器学习】svm

    机器学习算法--SVM 目录 机器学习算法--SVM 1. 背景 2. SVM推导 2.1 几何间隔和函数间隔 2.2 SVM原问题 2.3 SVM对偶问题 2.4 SMO算法 2.4.1 更新公式 ...

随机推荐

  1. 使用or展开进行sql优化(即sql语法union all代替or可以提高效率)

    问题: 这样一条sql应该怎么优化? select * from sys_user where user_code = 'zhangyong' or user_code in (select grp_ ...

  2. python 对shell 命令的 执行 逻辑 在一台机器上执行另一台机器的命令; 跨节点 执行命令

    import os l = ['ssh a;scp /data/visitlog/*11* root@d:/data/mapReduceVisitorLog/'] # b c for i in l: ...

  3. arpa/inet.h所引起的Segmentation fault及网络编程常见的头文件

    最近在学习Linux网络编程方面的知识,感觉还是有些困难.主要是对协议过程的理解,还有socket的API的理解不够深刻.今天复习编写了一个TCP的服务端和客户端的程序实现client.c从命令行参数 ...

  4. python调用API

    相信做过自动化运维的同学都用过API接口来完成某些动作.API是一套成熟系统所必需的接口,可以被其他系统或脚本来调用,这也是自动化运维的必修课. 本文主要介绍Python中调用API的几种方式,下面是 ...

  5. (2.16)Mysql之SQL基础——函数

    (2.16)Mysql之SQL基础——函数 关键词:mysql函数,mysql自定义函数,mysql聚合函数,mysql字符串函数,mysql数值函数 1.自定义函数 -- (1)一般形式 creat ...

  6. Python第一弹--------初步了解Python

    Python是一种跨平台的语言,这意味着它能够运行在所有主要的操作系统中. 语法规范几乎同C语言. 字符串: 当像Python输入一个字符串时,首先要输入一个引号.单引号.双引号.三引号三者等价.通常 ...

  7. PAT 1139 First Contact[难][模拟]

    1139 First Contact(30 分) Unlike in nowadays, the way that boys and girls expressing their feelings o ...

  8. sqlnet.ora的作用

    sqlnet.ora的作用 1.限制客户端访问(如指定客户端域为不允许访问) 2.指定命名方法(local naming,directory nameing...)的优先级 3.启用日志及跟踪(log ...

  9. python16_day36【爬虫1】

    一.requests 1. GET请求 # 1.无参数实例 import requests ret = requests.get('https://github.com/timeline.json') ...

  10. (转)关于EntityFramework中连接字符串的说明

    1. 基本格式 <connectionStrings> <add name="MyEntities" connectionString="metadat ...