VGG16提取图像特征 (torch7)
VGG16提取图像特征 (torch7)
下载pretrained model,保存到当前目录下
- th> caffemodel_url = 'http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel'
- th> proto_url='https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt'
- th> os.execute('wget VGG_ILSVRC_16_layers.caffemodel' .. caffemodel_url)
- th> os.execute('wget VGG_ILSVRC_16_layers_deploy.prototxt' .. proto_url)
使用loadcaffe提取图像特征
- require 'torch' -- 使用th命令,可忽略
- require 'nn' -- 修改model用到nn包
- require 'loadcaffe' -- 加在caffe训练的包
- require 'image' -- 加载图像,处理图像,可以使用cv中函数替代
- local loadSize = {3,256,256} -- 加载图像scale尺寸
- local sampleSize = {3,224,224} -- 样本尺寸,其实就是选取scale后图像的中间一块
- local function loadImage(input)
- -- 将图像缩放到loadSize尺寸,为了保证aspect ratio不变,将短边缩放后,长边按比例缩放
- if input:size(3) < input:size(2) then
- input = image.scale(input,loadSize[2],loadSize[3]*input:size(2)/input:size(3))
- -- 注意image.scale(src,width,height),width对应的是input:size[3],height对应的是input:size[2]
- else
- input = image.scale(input,loadSize[2]*input:size(3)/input:size(2),loadSize[3])
- end
- return input
- end
- local bgr_means = {103.939,116.779,123.68} --VGG预训练中的均值
- local function vggPreProcessing(img)
- local img2=img:clone()
- img2[{{1}}] =img2[{{3}}] -- image.load 加载图像是rgb格式,需转化维bgr
- img2[{{3}}] = img[{{1}}]
- img2:mul(255) -- image.load()加载的图像 pixel value \in [0,1]
- for i=1,3 do
- img2[i]:add(-bgr_means[i]) -- 中心化
- end
- return img2
- end
- local function centerCrop(input)
- local oH = sampleSize[2]
- local oW = sampleSize[3]
- local iW = input:size(3)
- local iH = input:size(2)
- local w1 = math.ceil((iW-oW)/2)
- local h1 = math.ceil((iH-oH)/2)
- local out = image.crop(input,w1,h1,w1+oW,h1+oH)
- return out
- end
- local function getPretrainedModel()
- local proto = 'VGG_ILSVRC_16_layers_deploy.prototxt'
- local caffemodel = '/home/zwzhou/modelZoo/VGG_ILSVRC_16_layers.caffemodel'
- local model = loadcaffe.load(proto,caffemodel,'nn') -- 加载pretrained model
- for i=1,3 do -- 将最后3层舍掉
- model.modules[#model.modules]=nil
- end
- -- 删除pretrained model的一些层官方方法
- -- ==========================
- -- for i= 40,38,-1 do
- -- model:remove(i)
- -- end
- -- ==========================
- model:add(nn.Normalize(2)) -- 添加一层正则化层,将输出向量归一化
- model:evaluate() -- self.training=false ,非训练,让网络参数不变
- return model
- end
- torch.setdefaulttensortype('torch.FloatTensor')
- model = getPretrainedModel()
- filepath = '/home/zwzhou/MOT16/train/MOT16-02/img1/000001.jpg'
- local img1=image.load(filepath) -- rgb图像
- local input = image.crop(img1,910,480,910+97,480+110) -- 里面参数时选择原图像的一个区域,boundingbox
- input = loadImage(input)
- local vggPreProcessed = vggPreProcessing(input)
- local out = centerCrop(vggPreProcessed)
- local outputs = model:forward(out)
- print(outputs)
- print(#outputs)
VGG16提取图像特征 (torch7)的更多相关文章
- CNN基础二:使用预训练网络提取图像特征
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...
- 原来CNN是这样提取图像特征的。。。
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学 ...
- 深度学习tensorflow实战笔记 用预训练好的VGG-16模型提取图像特征
1.首先就要下载模型结构 首先要做的就是下载训练好的模型结构和预训练好的模型,结构地址是:点击打开链接 模型结构如下: 文件test_vgg16.py可以用于提取特征.其中vgg16.npy是需要单独 ...
- Pytorch如何用预训练模型提取图像特征
方法很简单,你只需要将模型最后的全连接层改成Dropout即可. import torch from torchvision import models # load data x, y = get_ ...
- opencv批处理提取图像的特征
____________________________________________________________________________________________________ ...
- paper 131:【图像算法】图像特征:GLCM【转载】
转载地址:http://www.cnblogs.com/skyseraph/archive/2011/08/27/2155776.html 一 原理 1 概念:GLCM,即灰度共生矩阵,GLCM是一个 ...
- 【图像算法】图像特征:GLCM灰度共生矩阵,纹理特征
[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011 HQU Email:zgzhaobo@gmail.com QQ:452728574 Latest Modifie ...
- python实现gabor滤波器提取纹理特征 提取指静脉纹理特征 指静脉切割代码
参考博客:https://blog.csdn.net/xue_wenyuan/article/details/51533953 https://blog.csdn.net/jinshengtao/ar ...
- MATLAB·提取图像中多个目标
基于matlab工具箱提取图像中的多目标特征(代码如下): 代码前面部分为提取图像的边界信息,调用了后面的遍历函数Pixel_Search,函数实现方法见后~ %%ROI Testing close ...
随机推荐
- VM+CentOS+hadoop2.7搭建hadoop完全分布式集群
写在前边的话: 最近找了一个云计算开发的工作,本以为来了会直接做一些敲代码,处理数据的活,没想到师父给了我一个课题“基于质量数据的大数据分析”,那么问题来了首先要做的就是搭建这样一个平台,毫无疑问,底 ...
- dongle --NFC
A dongle is a small piece of hardware that attaches to a computer, TV, or other electronic device in ...
- 寻找最小(最大)的k个数
题目描述:输入n个整数,输出其中最小的k个元素. 例如:输入1,2,3,4,5,6,7,8这8个数字,则最小的4个数字为1,2,3,4. 思路1:最容易想到的方法:先对这个序列从小到大排序,然后输出前 ...
- Scrapy框架(3)
一.如何提升scrapy框架的爬取效率 增加并发: 默认scrapy开启的并发线程为32个,可以适当进行增加.在settings配置文件中修改CONCURRENT_REQUESTS = 100,并发设 ...
- centos linux 系统日常管理4 scp,rsync,md5sum,sha1sum,strace ,find Rsync 常见错误及解决方法 第十七节课
centos linux 系统日常管理4 scp,rsync,md5sum,sha1sum,strace ,find Rsync 常见错误及解决方法 第十七节课 rsync可以增量同步,scp不行 ...
- 给所有开发者的React Native详细入门指南
建议先下载好资料后,再阅读本文.demo代码和资料下载 目录 一.前言 二.回答一些问题 1.为什么写此教程 2.本文适合哪些人看 3.如何使用本教程 4.需要先学习JavaScript.HTML.C ...
- java序列化与反序列化(转)
Java序列化与反序列化是什么?为什么需要序列化与反序列化?如何实现Java序列化与反序列化?本文围绕这些问题进行了探讨. 1.Java序列化与反序列化 Java序列化是指把Java对象转换为字节序列 ...
- #C++初学记录(初识汉诺塔)
汉诺塔 题目 用1,2,...,n表示n个盘子,称为1号盘,2号盘,....号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于 印度传说的 ...
- HDU 1879 继续畅通工程(Prim||Kruscal模板题)
原题链接 Prim(点归并) //异或运算:相同为假,不同为真 #include<cstdio> #include<algorithm> #define maxn 105 us ...
- 33Sql数据删除与遍历
数据库的创建.添加.修改.查询.删除都是利用SQL语句和类QSqlQuery的结合. QSqlDatabase::database().可返回当前正在打开的数据库对象. 数据库的删除 //获取删除的名 ...