# MongoDB 集群部署
## 关键词
* 集群
* 副本集
* 分片
## MongoDB集群部署
>今天主要来说说Mongodb的三种集群方式的搭建Replica Set副本集 / Sharding分片 / Master-Slaver 主备。

### Replica Set副本集
>其实简单来说就是集群当中包含了多份数据,保证主节点挂掉了,备节点能继续提供数据服务,提供的前提就是数据需要和主节点一致

![集群部署](monog.jpg)

>Mongodb(M)表示主节点,Mongodb(S)表示备节点,Mongodb(A)表示仲裁节点。主备节点存储数据,仲裁节点不存储数据。客户端同时连接主节点与备节点,不连接仲裁节点。

>默认设置下,主节点提供所有增删查改服务,备节点不提供任何服务。但是可以通过设置使备节点提供查询服务,这样就可以减少主节点的压力,当客户端进行数据查询时,请求自动转到备节点上。这个设置叫做Read Preference Modes,同时Java客户端提供了简单的配置方式,可以不必直接对数据库进行操作。

>仲裁节点是一种特殊的节点,它本身并不存储数据,主要的作用是决定哪一个备节点在主节点挂掉之后提升为主节点,所以客户端不需要连接此节点。这里虽然只有一个备节点,但是仍然需要一个仲裁节点来提升备节点级别。我开始也不相信必须要有仲裁节点,但是自己也试过没仲裁节点的话,主节点挂了备节点还是备节点,所以咱们还是需要它的。
介绍完了集群方案,那么现在就开始搭建了。

1.建立数据文件夹

一般情况下不会把数据目录建立在mongodb的解压目录下,不过这里方便起见,就建在mongodb解压目录下吧。

```js
mkdir -p /mongodb/data/Master
mkdir -p /mongodb/data/slaver
mkdir -p /mongodb/data/arbiter
三个目录分别对应主,备,仲裁节点
```

2.建立配置文件
由于配置比较多,所以我们将配置写到文件里。

```js
dbpath=/mongodb/data/master
logpath=/mongodb/log/master.log
pidfilepath=/mongodb/master.pid
directoryperdb=true
logappend=true
replSet=testrs
bind_ip=10.10.29.136
port=27017
oplogSize=10000
fork=true
noprealloc=true
```

参数解释:
dbpath:数据存放目录
logpath:日志存放路径
pidfilepath:进程文件,方便停止mongodb
directoryperdb:为每一个数据库按照数据库名建立文件夹存放
logappend:以追加的方式记录日志
replSet:replica set的名字
bind_ip:mongodb所绑定的ip地址
port:mongodb进程所使用的端口号,默认为27017
oplogSize:mongodb操作日志文件的最大大小。单位为Mb,默认为硬盘剩余空间的5%
fork:以后台方式运行进程
noprealloc:不预先分配存储

3.启动mongodb
进入每个mongodb节点的bin目录下

```js
./monood -f master.conf
./mongod -f slaver.conf
./mongod -f arbiter.conf
```

注意配置文件的路径一定要保证正确,可以是相对路径也可以是绝对路径。

4.配置主,备,仲裁节点
可以通过客户端连接mongodb,也可以直接在三个节点中选择一个连接mongodb。

```js
./mongo 10.10.29.136:27017 #ip和port是某个节点的地址
>use admin
>cfg={ _id:"testrs", members:[ {_id:0,host:'10.10.29.136:27017',priority:2}, {_id:1,host:'10.10.29.131:27017',priority:1},
{_id:2,host:'10.10.29.132:27017',arbiterOnly:true}] };
>rs.initiate(cfg) #使配置生效
```

>cfg是自己定义的,当然最好不要是mongodb的关键字,conf,config都可以。

>最外层的_id表示replica set的名字,members里包含的是所有节点的地址以及优先级。优先级最高的即成为主节点,即这里的10.10.148.130:27017。特别注意的是,对于仲裁节点,需要有个特别的配置——arbiterOnly:true。这个千万不能少了,不然主备模式就不能生效。

>配置的生效时间根据不同的机器配置会有长有短,配置不错的话基本上十几秒内就能生效,有的配置需要一两分钟。如果生效了,执行rs.status()命令会看到如下信息:
```js
{
"set" : "testrs",
"date" : ISODate("2013-01-05T02:44:43Z"),
"myState" : 1,
"members" : [
{
"_id" : 0,
"name" : "10.10.148.130:27017",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"uptime" : 200,
"optime" : Timestamp(1357285565000, 1),
"optimeDate" : ISODate("2013-01-04T07:46:05Z"),
"self" : true
},
{
"_id" : 1,
"name" : "10.10.148.131:27017",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"uptime" : 200,
"optime" : Timestamp(1357285565000, 1),
"optimeDate" : ISODate("2013-01-04T07:46:05Z"),
"lastHeartbeat" : ISODate("2013-01-05T02:44:42Z"),
"pingMs" : 0
},
{
"_id" : 2,
"name" : "10.10.148.132:27017",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 200,
"lastHeartbeat" : ISODate("2013-01-05T02:44:42Z"),
"pingMs" : 0
}
],
"ok" : 1
}
```

同时可以查看对应节点的日志,发现正在等待别的节点生效或者正在分配数据文件。

>现在基本上已经完成了集群的所有搭建工作。一个是往主节点插入数据,能从备节点查到之前插入的数据。二是停掉主节点,备节点能变成主节点提供服务。三是恢复主节点,备节点也能恢复其备的角色,而不是继续充当主的角色。二和三都可以通过rs.status()命令实时查看集群的变化。100G数据以下建议用副本集,高并发下备节点同步数据是需要时间的

### Sharding分片

这就是传说中的分片了。上面提到一个机器就算能力再大也有天花板,就像军队打仗一样,一个人再厉害喝血瓶也拼不过对方的一个师。俗话说三个臭皮匠顶个诸葛亮,这个时候团队的力量就凸显出来了。在互联网也是这样,一台普通的机器做不了的多台机器来做,如下图

![分片](fenpian.jpg)

>一台机器的一个数据表 Collection1 存储了 1T 数据,压力太大了!在分给4个机器后,每个机器都是256G,则分摊了集中在一台机器的压力。也许有人问一台机器硬盘加大一点不就可以了,为什么要分给四台机器呢?不要光想到存储空间,实际运行的数据库还有硬盘的读写、网络的IO、CPU和内存的瓶颈。在mongodb集群只要设置好了分片规则,通过mongos操作数据库就能自动把对应的数据操作请求转发到对应的分片机器上。在生产环境中分片的片键可要好好设置,这个影响到了怎么把数据均匀分到多个分片机器上,不要出现其中一台机器分了1T,其他机器没有分到的情况,这样还不如不分片!

搭建集群具体步骤:
首先确定各个组件的数量,mongos 3个, config server 3个,数据分3片 shard server 3个,每个shard 有一个副本一个仲裁也就是 3 * 2 = 6 个,总共需要部署15个实例。这些实例可以部署在独立机器也可以部署在一台机器,我们这里测试资源有限,只准备了 3台机器,在同一台机器只要端口不同就可以,看一下物理部署图:

![分片](fenpian1.jpg)

架构搭好了,安装软件!

1、准备机器,IP分别设置为: 192.168.0.136、192.168.0.137、192.168.0.138。
2、分别在每台机器上建立mongodb分片对应文件夹。
3、下载mongodb的安装程序包
4、分别在每台机器建立mongos 、config 、 shard1 、shard2、shard3 五个目录。
因为mongos不存储数据,只需要建立日志文件目录即可。

```js

#建立mongos目录
mkdir -p /data/mongodbtest/mongos/log

#建立config server 数据文件存放目录
mkdir -p /data/mongodbtest/config/data

#建立config server 日志文件存放目录
mkdir -p /data/mongodbtest/config/log

#建立config server 日志文件存放目录
mkdir -p /data/mongodbtest/mongos/log

#建立shard1 数据文件存放目录
mkdir -p /data/mongodbtest/shard1/data

#建立shard1 日志文件存放目录
mkdir -p /data/mongodbtest/shard1/log

#建立shard2 数据文件存放目录
mkdir -p /data/mongodbtest/shard2/data

#建立shard2 日志文件存放目录
mkdir -p /data/mongodbtest/shard2/log

#建立shard3 数据文件存放目录
mkdir -p /data/mongodbtest/shard3/data

#建立shard3 日志文件存放目录
mkdir -p /data/mongodbtest/shard3/log

#建立mongos目录
mkdir -p /data/mongodbtest/mongos/log

#建立config server 数据文件存放目录
mkdir -p /data/mongodbtest/config/data

#建立config server 日志文件存放目录
mkdir -p /data/mongodbtest/config/log

#建立config server 日志文件存放目录
mkdir -p /data/mongodbtest/mongos/log

#建立shard1 数据文件存放目录
mkdir -p /data/mongodbtest/shard1/data

#建立shard1 日志文件存放目录
mkdir -p /data/mongodbtest/shard1/log

#建立shard2 数据文件存放目录
mkdir -p /data/mongodbtest/shard2/data

#建立shard2 日志文件存放目录
mkdir -p /data/mongodbtest/shard2/log

#建立shard3 数据文件存放目录
mkdir -p /data/mongodbtest/shard3/data

#建立shard3 日志文件存放目录
mkdir -p /data/mongodbtest/shard3/log
```
5、规划5个组件对应的端口号,由于一个机器需要同时部署 mongos、config server 、shard1、shard2、shard3,所以需要用端口进行区分。
这个端口可以自由定义,在本文 mongos为 20000, config server 为 21000, shard1为 22001 , shard2为22002, shard3为22003.
6、在每一台服务器分别启动配置服务器。

```js

/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --configsvr --dbpath /data/mongodbtest/config/data --port 21000 --logpath /data/mongodbtest/config/log/config.log --fork
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --configsvr --dbpath /data/mongodbtest/config/data --port 21000 --logpath /data/mongodbtest/config/log/config.log --fork
```
7、在每一台服务器分别启动mongos服务器。

```js
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongos --configdb 192.168.0.136:21000,192.168.0.137:21000,192.168.0.138:21000 --port 20000 --logpath /data/mongodbtest/mongos/log/mongos.log --fork

/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongos --configdb 192.168.0.136:21000,192.168.0.137:21000,192.168.0.138:21000 --port 20000 --logpath /data/mongodbtest/mongos/log/mongos.log --fork
```
8、配置各个分片的副本集。

```js

#在每个机器里分别设置分片1服务器及副本集shard1
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard1 --port 22001 --dbpath /data/mongodbtest/shard1/data --logpath /data/mongodbtest/shard1/log/shard1.log --fork --nojournal --oplogSize 10

#在每个机器里分别设置分片1服务器及副本集shard1
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard1 --port 22001 --dbpath /data/mongodbtest/shard1/data --logpath /data/mongodbtest/shard1/log/shard1.log --fork --nojournal --oplogSize 10
为了快速启动并节约测试环境存储空间,这里加上 nojournal 是为了关闭日志信息,在我们的测试环境不需要初始化这么大的redo日志。同样设置 oplogsize是为了降低 local 文件的大小,oplog是一个固定长度的 capped collection,它存在于”local”数据库中,用于记录Replica Sets操作日志。注意,这里的设置是为了测试!

#在每个机器里分别设置分片2服务器及副本集shard2
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard2 --port 22002 --dbpath /data/mongodbtest/shard2/data --logpath /data/mongodbtest/shard2/log/shard2.log --fork --nojournal --oplogSize 10

#在每个机器里分别设置分片2服务器及副本集shard2
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard2 --port 22002 --dbpath /data/mongodbtest/shard2/data --logpath /data/mongodbtest/shard2/log/shard2.log --fork --nojournal --oplogSize 10

#在每个机器里分别设置分片3服务器及副本集shard3
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard3 --port 22003 --dbpath /data/mongodbtest/shard3/data --logpath /data/mongodbtest/shard3/log/shard3.log --fork --nojournal --oplogSize 10

#在每个机器里分别设置分片3服务器及副本集shard3
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongod --shardsvr --replSet shard3 --port 22003 --dbpath /data/mongodbtest/shard3/data --logpath /data/mongodbtest/shard3/log/shard3.log --fork --nojournal --oplogSize 10
分别对每个分片配置副本集,深入了解副本集参考本系列前几篇文章。

任意登陆一个机器,比如登陆192.168.0.136,连接mongodb

#设置第一个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22001

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard1", members:[
{_id:0,host:"192.168.0.136:22001"},
{_id:1,host:"192.168.0.137:22001"},
{_id:2,host:"192.168.0.138:22001",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);

#设置第二个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22002

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard2", members:[
{_id:0,host:"192.168.0.136:22002"},
{_id:1,host:"192.168.0.137:22002"},
{_id:2,host:"192.168.0.138:22002",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);

#设置第三个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22003

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard3", members:[
{_id:0,host:"192.168.0.136:22003"},
{_id:1,host:"192.168.0.137:22003"},
{_id:2,host:"192.168.0.138:22003",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);

#设置第一个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22001

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard1", members:[
{_id:0,host:"192.168.0.136:22001"},
{_id:1,host:"192.168.0.137:22001"},
{_id:2,host:"192.168.0.138:22001",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);

#设置第二个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22002

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard2", members:[
{_id:0,host:"192.168.0.136:22002"},
{_id:1,host:"192.168.0.137:22002"},
{_id:2,host:"192.168.0.138:22002",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);

#设置第三个分片副本集
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:22003

#使用admin数据库
use admin

#定义副本集配置
config = { _id:"shard3", members:[
{_id:0,host:"192.168.0.136:22003"},
{_id:1,host:"192.168.0.137:22003"},
{_id:2,host:"192.168.0.138:22003",arbiterOnly:true}
]
}

#初始化副本集配置
rs.initiate(config);
```
9、目前搭建了mongodb配置服务器、路由服务器,各个分片服务器,不过应用程序连接到 mongos 路由服务器并不能使用分片机制,还需要在程序里设置分片配置,让分片生效。

```js

#连接到mongos
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:20000

#使用admin数据库
user admin

#串联路由服务器与分配副本集1
db.runCommand( { addshard : "shard1/192.168.0.136:22001,192.168.0.137:22001,192.168.0.138:22001"});

#连接到mongos
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:20000

#使用admin数据库
user admin

#串联路由服务器与分配副本集1
db.runCommand( { addshard : "shard1/192.168.0.136:22001,192.168.0.137:22001,192.168.0.138:22001"});
如里shard是单台服务器,用 db.runCommand( { addshard : “[: ]” } )这样的命令加入,如果shard是副本集,用db.runCommand( { addshard : “replicaSetName/[:port][,serverhostname2[:port],…]” });这样的格式表示 。

#串联路由服务器与分配副本集2
db.runCommand( { addshard : "shard2/192.168.0.136:22002,192.168.0.137:22002,192.168.0.138:22002"});
#串联路由服务器与分配副本集2
db.runCommand( { addshard : "shard2/192.168.0.136:22002,192.168.0.137:22002,192.168.0.138:22002"});

#串联路由服务器与分配副本集3
db.runCommand( { addshard : "shard3/192.168.0.136:22003,192.168.0.137:22003,192.168.0.138:22003"});

#串联路由服务器与分配副本集3
db.runCommand( { addshard : "shard3/192.168.0.136:22003,192.168.0.137:22003,192.168.0.138:22003"});
XHTML

#查看分片服务器的配置
db.runCommand( { listshards : 1 } );

#查看分片服务器的配置
db.runCommand( { listshards : 1 } );
```
内容输出

```js

{
"shards" : [
{
"_id" : "shard1",
"host" : "shard1/192.168.0.136:22001,192.168.0.137:22001"
},
{
"_id" : "shard2",
"host" : "shard2/192.168.0.136:22002,192.168.0.137:22002"
},
{
"_id" : "shard3",
"host" : "shard3/192.168.0.136:22003,192.168.0.137:22003"
}
],
"ok" : 1
}
{
"shards" : [
{
"_id" : "shard1",
"host" : "shard1/192.168.0.136:22001,192.168.0.137:22001"
},
{
"_id" : "shard2",
"host" : "shard2/192.168.0.136:22002,192.168.0.137:22002"
},
{
"_id" : "shard3",
"host" : "shard3/192.168.0.136:22003,192.168.0.137:22003"
}
],
"ok" : 1
}
```
因为192.168.0.138是每个分片副本集的仲裁节点,所以在上面结果没有列出来。
10、目前配置服务、路由服务、分片服务、副本集服务都已经串联起来了,但我们的目的是希望插入数据,数据能够自动分片,就差那么一点点,一点点。。。连接在mongos上,准备让指定的数据库、指定的集合分片生效。
```js

#指定testdb分片生效
db.runCommand( { enablesharding :"testdb"});

#指定testdb分片生效
db.runCommand( { enablesharding :"testdb"});
XHTML

#指定数据库里需要分片的集合和片键
db.runCommand( { shardcollection : "testdb.table1",key : {id: 1} } )

#指定数据库里需要分片的集合和片键
db.runCommand( { shardcollection : "testdb.table1",key : {id: 1} } )
```
我们设置testdb的 table1 表需要分片,根据 id 自动分片到 shard1 ,shard2,shard3 上面去。要这样设置是因为不是所有mongodb 的数据库和表 都需要分片!
11、测试分片配置结果。

```js
#连接mongos服务器
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:20000

#连接mongos服务器
/data/mongodbtest/mongodb-linux-x86_64-2.4.8/bin/mongo 127.0.0.1:20000

#使用testdb
use testdb;

#使用testdb
use testdb;

#插入测试数据
for (var i = 1; i <= 100000; i++)
db.table1.save({id:i,"test1":"testval1"});

#插入测试数据
for (var i = 1; i <= 100000; i++)
db.table1.save({id:i,"test1":"testval1"});

#查看分片情况如下,部分无关信息省掉了
db.table1.stats();

#查看分片情况如下,部分无关信息省掉了
db.table1.stats();

```
```js

{
"sharded" : true,
"ns" : "testdb.table1",
"count" : 100000,
"numExtents" : 13,
"size" : 5600000,
"storageSize" : 22372352,
"totalIndexSize" : 6213760,
"indexSizes" : {
"_id_" : 3335808,
"id_1" : 2877952
},
"avgObjSize" : 56,
"nindexes" : 2,
"nchunks" : 3,
"shards" : {
"shard1" : {
"ns" : "testdb.table1",
"count" : 42183,
"size" : 0,
...
"ok" : 1
},
"shard2" : {
"ns" : "testdb.table1",
"count" : 38937,
"size" : 2180472,
...
"ok" : 1
},
"shard3" : {
"ns" : "testdb.table1",
"count" :18880,
"size" : 3419528,
...
"ok" : 1
}
},
"ok" : 1
}

{
"sharded" : true,
"ns" : "testdb.table1",
"count" : 100000,
"numExtents" : 13,
"size" : 5600000,
"storageSize" : 22372352,
"totalIndexSize" : 6213760,
"indexSizes" : {
"_id_" : 3335808,
"id_1" : 2877952
},
"avgObjSize" : 56,
"nindexes" : 2,
"nchunks" : 3,
"shards" : {
"shard1" : {
"ns" : "testdb.table1",
"count" : 42183,
"size" : 0,
...
"ok" : 1
},
"shard2" : {
"ns" : "testdb.table1",
"count" : 38937,
"size" : 2180472,
...
"ok" : 1
},
"shard3" : {
"ns" : "testdb.table1",
"count" :18880,
"size" : 3419528,
...
"ok" : 1
}
},
"ok" : 1
}
```
可以看到数据分到3个分片,各自分片数量为: shard1 “count” : 42183,shard2 “count” : 38937,shard3 “count” : 18880。已经成功了!不过分的好像不是很均匀,所以这个分片还是很有讲究的,后续再深入讨论。
12、java程序调用分片集群,因为我们配置了三个mongos作为入口,就算其中哪个入口挂掉了都没关系,使用集群客户端程序如下:

```js
public class TestMongoDBShards {

public static void main(String[] args) {

try {
List<ServerAddress> addresses = new ArrayList<ServerAddress>();
ServerAddress address1 = new ServerAddress("192.168.0.136" , 20000);
ServerAddress address2 = new ServerAddress("192.168.0.137" , 20000);
ServerAddress address3 = new ServerAddress("192.168.0.138" , 20000);
addresses.add(address1);
addresses.add(address2);
addresses.add(address3);

MongoClient client = new MongoClient(addresses);
DB db = client.getDB( "testdb" );
DBCollection coll = db.getCollection( "table1" );

BasicDBObject object = new BasicDBObject();
object.append( "id" , 1);

DBObject dbObject = coll.findOne(object);

System. out .println(dbObject);

} catch (Exception e) {
e.printStackTrace();
}
}
}

public class TestMongoDBShards {

public static void main(String[] args) {

try {
List<ServerAddress> addresses = new ArrayList<ServerAddress>();
ServerAddress address1 = new ServerAddress("192.168.0.136" , 20000);
ServerAddress address2 = new ServerAddress("192.168.0.137" , 20000);
ServerAddress address3 = new ServerAddress("192.168.0.138" , 20000);
addresses.add(address1);
addresses.add(address2);
addresses.add(address3);

MongoClient client = new MongoClient(addresses);
DB db = client.getDB( "testdb" );
DBCollection coll = db.getCollection( "table1" );

BasicDBObject object = new BasicDBObject();
object.append( "id" , 1);

DBObject dbObject = coll.findOne(object);

System. out .println(dbObject);

} catch (Exception e) {
e.printStackTrace();
}
}
}

```
整个分片集群搭建完了,思考一下我们这个架构是不是足够好呢?其实还有很多地方需要优化,比如我们把所有的仲裁节点放在一台机器,其余两台机器承担了全部读写操作,但是作为仲裁的192.168.0.138相当空闲。让机器3 192.168.0.138多分担点责任吧!架构可以这样调整,把机器的负载分的更加均衡一点,每个机器既可以作为主节点、副本节点、仲裁节点,这样压力就会均衡很多了,如图

![分片](fenpianzuiyou.jpg)

缺点:只有真的是大数据,Sharding才能显现威力,Sharding可以将多片数据集中到路由节点上进行一些对比,然后将数据返回给客户端,但是效率还是比较低的说。
### Master-Slaver
这个是最简答的集群搭建,不过准确说也不能算是集群,只能说是主备。并且官方已经不推荐这种方式,所以在这里只是简单的介绍下吧,搭建方式也相对简单。
```js
./mongod --master --dbpath /data/masterdb/ #主节点

./mongod --slave --source <masterip:masterport> --dbpath /data/slavedb/ 备节点
```
基本上只要在主节点和备节点上分别执行这两条命令,Master-Slaver就算搭建完成了。我没有试过主节点挂掉后备节点是否能变成主节点,不过既然已经不推荐了,大家就没必要去使用了。

mongo学亮的分享的更多相关文章

  1. 【学亮IT手记】jQuery each()函数用法实例

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...

  2. 【学亮编程手记】Spring Cloud三大组件Eureka/Feign/Histrix的原理及使用

  3. 【学亮IT手记】MySql行列转换案例

    create table score( name ), math int, english int ); ,); ,); ,); ,); SHOW tables; SELECT * from scor ...

  4. 【学亮IT手记】mysql创建/查看/切换数据库

    --创建数据库 create database web_test1 CHARACTER set utf8; --切换数据库 use web_test1; --查看当前使用的数据库 select DAT ...

  5. 【学亮IT手记】Servlet的生命周期

    1.1 Servlet的生命周期 1.1.1 Servlet的生命周期概述 1.1.1.1 什么是生命周期 生命周期:一个对象从创建到销毁过程. 1.1.1.2 Servlet的生命周期(*****) ...

  6. 【学亮IT手记】利用字节流复制图片

  7. 【学亮IT手记】利用字节流复制文件

  8. 【学亮IT手记】使用Map代替switch...case语句

  9. 【学亮开讲】Oracle内外连接查询20181119

    --内连接查询 --需求:查询显示业主编号.业主名称.业主类型名称 select os.id 业主编号,os.name 业主名称,ot.name 业主类型名称 from t_owners os,t_o ...

随机推荐

  1. 豆瓣API接口开发,结合angularJS来做,感觉爽歪歪!

    第一次做还是先说下API 是什么鬼? API : application program interface 应用程序编程接口: 有那些常见的API: webAPI : 通过WEB方式提供结构叫 WE ...

  2. C#实现像Git那样计算Hash值

    从Git Tip of the Week: Objects一文中得知,Git是这样计算提交内容的Hash值的: Hash算法用的是SHA1 计算前,会在内容前面添加"blob 内容长度\0& ...

  3. Buy Tickets---poj2828(线段树)

    题目链接:http://poj.org/problem?id=2828 题意就是有n个x y每次都是把y放到x位置,如果x位置有数,则把该位置之后的数往后放一位: [题解]: 线段树节点中保存这一段中 ...

  4. 自动化工具构建vue项目

    其实之前对vue的话也有过一段时间的学习,博客园也是写了5篇vue的学习笔记.但是一直是通过CDN的方式在html文件头部引入vue.js,然后实例化vue对象绑定Dom,写组件写方法.就算是在实际项 ...

  5. Python将科学计数法数值转换为指定精度浮点数

    Python将科学计数法数值转换为指定精度浮点数 In [20]:money = 1190000.0 In [21]: traded_maket_value = 13824000000 In [22] ...

  6. 简单的共享文件http

    如果你急需一个简单的Web Server,但你又不想去下载并安装那些复杂的HTTP服务程序,比如:Apache,ISS等.那么, Python 可能帮助你.使用Python可以完成一个简单的内建 HT ...

  7. Teigha.net读写dwg文件显示

    官网:http://www.opendesign.com/ http://www.cnblogs.com/zhanglibo0626/archive/2011/11/04/2236238.html 下 ...

  8. python模块之shutil高级文件操作

    简介 shutil模块提供了大量的文件的高级操作.特别针对文件拷贝和删除,主要功能为目录和文件操作以及压缩操作.对单个文件的操作也可参见os模块. 注意即便是更高级别的文件复制函数(shutil.co ...

  9. Python自动发送邮件-smtplib和email库

    ''' 一.先导入smtplib模块 导入MIMEText库用来做纯文本的邮件模板 二.发邮件几个相关的参数,每个邮箱的发件服务器不一样,以163为例子百度搜索服务器是 smtp.163.com 三. ...

  10. 01 - spring mvc 概述及配置DispatcherServlet

    1.Spring mvc 基于model2实现,整体框架流程如(图片来自百度): ①web容器接收到http请求,若匹配DispatcherServlet的请求映射路径(web.xml),则容器会交给 ...