Description

给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000

Input

第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

Output

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

Sample Input

4 3
0 1 1
1 2 2
1 3 4

Sample Output

2

Solution

开一个100W的数组t,t[i]表示到当前处理的树的根距离为i的最小边数
对于点x,我们要统计经过x的路径的话
就分别统计x的每颗子树,在统计一颗子树的时候用t[i]更新答案
并在每统计完一颗子树后更新t数组
↑这样是为了防止统计答案的时候两个点在同一子树里

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (200000+100)
using namespace std;
struct node
{
int to,next,len;
}edge[N*];
int n,k,sum,root,ans,INF;
int head[N],num_edge;
int depth[N],d[N],size[N],maxn[N];
int dis[N],t[N*];
bool vis[N]; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].len=l;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void Get_root(int x,int fa)
{
size[x]=; maxn[x]=;
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].to!=fa && !vis[edge[i].to])
{
Get_root(edge[i].to,x);
size[x]+=size[edge[i].to];
maxn[x]=max(maxn[x],size[edge[i].to]);
}
maxn[x]=max(maxn[x],sum-size[x]);
if (maxn[x]<maxn[root]) root=x;
} void Calc(int x,int fa)
{
if (dis[x]<=k) ans=min(ans,depth[x]+t[k-dis[x]]);
for (int i=head[x];i!=;i=edge[i].next)
if (!vis[edge[i].to] && edge[i].to!=fa)
{
dis[edge[i].to]=dis[x]+edge[i].len;
depth[edge[i].to]=depth[x]+;
Calc(edge[i].to,x);
}
} void Reset(int x,int fa,int flag)
{
if (dis[x]<=k)
{
if (flag) t[dis[x]]=min(t[dis[x]],depth[x]);
else t[dis[x]]=INF;
}
for (int i=head[x];i!=;i=edge[i].next)
if (edge[i].to!=fa && !vis[edge[i].to])
Reset(edge[i].to,x,flag);
} void Solve(int x)
{
vis[x]=true; t[]=;
for (int i=head[x];i!=;i=edge[i].next)
if (!vis[edge[i].to])
{
depth[edge[i].to]=;
dis[edge[i].to]=edge[i].len;
Calc(edge[i].to,);
Reset(edge[i].to,,);
}
for (int i=head[x];i!=;i=edge[i].next)
if (!vis[edge[i].to])
Reset(edge[i].to,,);
for (int i=head[x];i!=;i=edge[i].next)
if (!vis[edge[i].to])
{
sum=size[edge[i].to];
root=;
Get_root(edge[i].to,);
Solve(root);
} } int main()
{
int u,v,l;
memset(t,0x3f,sizeof(t));
memset(&INF,0x3f,sizeof(INF));
scanf("%d%d",&n,&k);
for (int i=;i<=n-;++i)
{
scanf("%d%d%d",&u,&v,&l);
u++; v++;
add(u,v,l); add(v,u,l);
}
ans=sum=maxn[]=n;
Get_root(,);
Solve(root);
printf("%d",ans==n?-:ans);
}

BZOJ2599:[IOI2011]Race(点分治)的更多相关文章

  1. [bzoj2599][IOI2011]Race——点分治

    Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...

  2. 【BZOJ-2599】Race 点分治

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 2590  Solved: 769[Submit][Status ...

  3. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  4. [IOI2011]Race 点分治

    [IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...

  5. bzoj2599: [IOI2011]Race(点分治)

    写了四五道点分治的题目了,算是比较理解点分治是什么东西了吧= = 点分治主要用来解决点对之间的问题的,比如距离为不大于K的点有多少对. 这道题要求距离等于K的点对中连接两点的最小边数. 那么其实道理是 ...

  6. [luogu4149][bzoj2599][IOI2011]Race【点分治】

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 K,且边的数量最小. 题解 比较明显需要用到点分治,我们定义\(d\)数组表示当前节点到根节点\(rt\)之间有多少个节点,也可以表示有多少 ...

  7. bzoj2599/luogu4149 [IOI2011]Race (点分治)

    点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...

  8. 2019.01.09 bzoj2599: [IOI2011]Race(点分治)

    传送门 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 思路: 考虑点分治如何合并. 我们利用树形dpdpdp求树的直径的方法,边dfsdfsdfs子树边统计答案即可. 代码: ...

  9. BZOJ2599 [IOI2011]Race 【点分治】

    题目 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 输入格式 第一行 两个整数 n, k 第二..n行 每行三个整 ...

随机推荐

  1. WCF 之部署(VS2010)

    一. 环境vs2010,WCF应用程序,server 2008 第一步:WCF项目右键点击项目,选择生成部署包,如下图: 第二步:WCF项目上右键,选择:在windows资源管理器中打开文件夹,如下图 ...

  2. 【SSH网上商城项目实战24】Struts2中如何处理多个Model请求

       转自: https://blog.csdn.net/eson_15/article/details/51465067 1. 问题的提出 Struts2中如果实现了ModelDriven<m ...

  3. UML 简介笔记

    1. UML 是什么? UML 统一建模语言是一组图形表示法,可以帮助描述和设计软件系统,特别是使用面向对象 OO 风格建造的软件系统. 2. 使用 UML 的方式 UML 有 3 种使用模式:草稿, ...

  4. IDEA 2017.2.2 环境下使用JUnit

    JUnit:单元测试框架,测试对象为一个类中的方法. JUnit不是Javase的一部分,想要使用需要导入jar包,在IntelliJ IDEA 中自带JUnit插件. JUnit 版本有3.X 4. ...

  5. Redis教程基本命令

    Redis是什么? Redis(REmote DIctionary Server)是一个key-value存储系统,能够高速存储数据,value值可以为字符串.哈希表.列表.集合.有序集合,位图,hy ...

  6. Node.js+websocket+mongodb实现即时聊天室

    ChatRoom Node.js+websocket+mongodb实现即时聊天室 A,nodejs简介:Node.js是一个可以让javascript运行在服务器端的平台,它可以让javascrip ...

  7. cookie、session、分页

    一.cookie HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不会直接影响后面的请求响应情 ...

  8. 利用localStorage事件来跨标签页共享sessionStorage

    //干货 利用localStorage事件来跨标签页共享sessionStorage //因为cookie保存字节数量有限,很多童鞋考虑用html5 storage来保存临时数据,Sessionsto ...

  9. 关于 webpack 跨域

    一.使用  http-proxy-middleware  代理 安装 http-proxy-middleware 依赖 在src 目录下 新建一个 setupProxy.js文件 // 引用依赖 va ...

  10. C# 读取excel用户列表过滤一个月内未收到外部邮件已离职的员工

    1.通过aspose.cells读取excel中的数据并添加到list中 //存储从excel中读取出来的数据 List<UserInfo> lst_userinfo = new List ...