BZOJ1486:[HNOI2009]最小圈(最短路,二分)
Description
Input
Output
Sample Input
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3
Sample Output
Solution
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define N (3009)
using namespace std; double eps=1e-,dis[N];
struct Edge{int to,next,len;}edge[N*];
int n,m,u,v,l,cnt[N],used[N],head[N],num_edge;
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].len=l;
edge[num_edge].next=head[u];
head[u]=num_edge;
} bool SPFA(double mid)
{
memset(cnt,,sizeof(cnt));
memset(used,,sizeof(used));
for (int i=; i<=n; ++i) dis[i]=1e18;
while (!q.empty()) q.pop();
dis[]=; used[]=true; q.push();
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x]; i; i=edge[i].next)
if (dis[x]+edge[i].len-mid<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].len-mid;
if (!used[edge[i].to])
{
cnt[edge[i].to]++;
if (cnt[edge[i].to]>) return true;
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
used[x]=false;
}
return false;
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
scanf("%d%d%d",&u,&v,&l),add(u,v,l);
double l=-1e7, r=1e7;
while (r-l>eps)
{
double mid=(l+r)/;
if (SPFA(mid)) r=mid;
else l=mid;
}
printf("%.8lf\n",l);
}
BZOJ1486:[HNOI2009]最小圈(最短路,二分)的更多相关文章
- BZOJ1486 HNOI2009 最小圈 【01分数规划】
BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...
- bzoj千题计划227:bzoj1486: [HNOI2009]最小圈
http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...
- bzoj1486: [HNOI2009]最小圈
二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...
- 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...
- 分数规划(Bzoj1486: [HNOI2009]最小圈)
题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...
- [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环
题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...
- 【BZOJ1486】[HNOI2009]最小圈 分数规划
[BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...
- BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )
二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...
- [HNOI2009]最小圈 (二分答案+负环)
题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...
随机推荐
- RabbitMQ---1、安装与部署
一.下载资源 Rabbit MQ 是建立在强大的Erlang OTP平台上,因此安装Rabbit MQ的前提是安装Erlang.(在官网自行选择版本) 1.otp_win64_20.2.exe 下载地 ...
- word转pdf(使用office)
1.安装office软件 2.在vs中写代码 注意需要引入 Microsoft.Office.Interop.Word插件 /// <summary> /// 将word转换成pdf文件 ...
- [PHP] 通用网关接口CGI 的运行原理
CGI 的运行原理:1.客户端访问某个 URL 地址之后,通过 GET/POST/PUT 等方式提交数据,并通过 HTTP 协议向 Web 服务器发出请求.2.服务器端的 HTTP Daemon(守护 ...
- Web开发 学习积累20161018
项目 一.项目做的是什么 业务逻辑 -> 增删改查 二.什么是面向对象编程,它有哪些好处 oop:object oriented programming <>核心思想:使用人类思考问 ...
- Spring MVC 实现Excel的导入导出功能(1:Excel的导入)
简介 这篇文章主要记录自己学习上传和导出Excel时的一些心得,企业办公系统的开发中,经常会收到这样的需求:批量录入数据.数据报表使用 Excel 打开,或者职能部门同事要打印 Excel 文件,而他 ...
- 您必须先调用“WebSecurity.InitializeDatabaseConnection”方法,然后再调用"WebSecurity"类的任何其他方法。
今天调试程序的时候出现了这个是,可惜没截图! 您必须先调用“WebSecurity.InitializeDatabaseConnection”方法,然后再调用"WebSecurity&quo ...
- K:栈相关的算法
本博文总结了常见的应用栈来进行实现的相关算法 ps:点击相关问题的标题,即可进入相关的博文进行查看其算法的思想及其实现,这篇博文更多的是作为目录使用 大数加法:在java中,整数是有最大上限的.所谓大 ...
- libevent学习笔记 —— 第一个程序:计时器
用libevent写个定时器其实步骤不多: 1.初始化libevent 2.设置事件 3.添加事件 4.进入循环 由于定时事件触发之后,默认自动删除,所以如果要一直计时,则要在回调函数中重新添加定时事 ...
- BZOJ2476: 战场的数目(矩阵快速幂)
题意 题目链接 Sol 神仙题Orzzz 考虑两边是否有\(1\) 设\(f[i]\)表示周长为\(2i\)的方案数 第一种情况:左侧或右侧有一个1,那么把这个1删去,对应的方案数为\(f[i - 1 ...
- cookie和session 区别
cookie机制采用的是在客户端保持状态的方案,session机制采用的是在服务器端保持状态的方案. 1.cookie数据存放在客户的浏览器上,session数据放在服务器上. 2.cookie不是很 ...