这题状态方程很容易得到:DP[i][j] = max(DP[i-1][j],DP[i+1][j],DP[i][j-1],DP[i][j+1]) + 1

难点在于边界条件和剪枝,因为这方程的条件是点在map里,且只有递增关系才会变化,如果用循环的话要判断递增,所以用递归比较方便

#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
using namespace std; #define mem(a,b) memset(a,b,sizeof(a))
#define pf printf
#define sf scanf
#define debug printf("!\n")
#define INF 10000
#define MAX(a,b) a>b?a:b
#define blank pf("\n")
#define LL long long int n,m,V;
int dp[][],map[][]; int f(int i,int j)
{
if(dp[i][j]!=)
return dp[i][j];
int w,s,a,d;
if(i->=)
{
if(map[i-][j]<map[i][j]) s=f(i-,j)+;
else s=;
}
else s=;
if(i+<=n)
{
if(map[i+][j]<map[i][j]) w=f(i+,j)+;
else w=;
}
else w=;
if(j->=)
{
if(map[i][j-]<map[i][j]) a=f(i,j-)+;
else a=;
}
else a=;
if(j+<=m)
{
if(map[i][j+]<map[i][j]) d=f(i,j+)+;
else d=;
}
else d=; int max1 = max(w,s);
int max2 = max(a,d);
return max(max1,max2); } int main()
{
int i,j,t;
while(~sf("%d%d",&n,&m))
{
mem(dp,);
dp[][] =;
for(i=;i<=n;i++)
{
for(j = ;j<=m;j++)
sf("%d",&map[i][j]);
}
int max = ;
for(i=;i<=n;i++)
{
for(j = ;j<=m;j++)
{
dp[i][j]=f(i,j);
if(max<dp[i][j]) max = dp[i][j];
}
}
pf("%d\n",max); }
}

poj 1088(DP+递归)的更多相关文章

  1. poj 1088 dp **

    链接:点我 记忆化搜索很好写 #include<cstdio> #include<iostream> #include<algorithm> #include< ...

  2. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  3. POJ 1088 滑雪(记忆化搜索+dp)

    POJ 1088 滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 107319   Accepted: 40893 De ...

  4. POJ 1088 滑雪(记忆化搜索)

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 92384   Accepted: 34948 Description ...

  5. poj 1088 滑雪(区间dp+记忆化搜索)

    题目链接:http://poj.org/problem?id=1088 思路分析: 1>状态定义:状态dp[i][j]表示在位置map[i][j]可以滑雪的最长区域长度: 2>状态转移方程 ...

  6. poj 1088 滑雪 DP(dfs的记忆化搜索)

    题目地址:http://poj.org/problem?id=1088 题目大意:给你一个m*n的矩阵 如果其中一个点高于另一个点 那么就可以从高点向下滑 直到没有可以下滑的时候 就得到一条下滑路径 ...

  7. POJ - 1088 滑雪 dp

    http://bailian.openjudge.cn/practice/1088?lang=en_US 题解: 设一个dp[N][N]数组代表从(i,j)坐标开始能滑到的最远距离.更新的方法为 遍历 ...

  8. poj 1141 区间dp+递归打印路径

    Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30383   Accepted: 871 ...

  9. DP:Skiing(POJ 1088)

     北大教你怎么滑雪 题目是中文的,要读懂题目其实不难 其实这道题挺经典的,我们这样想,他最终要找到一个最大值,这个时候我们就想到要用动态规划 那怎么用呢?我们同时这样想,由于滑雪的最高点我们不能立马找 ...

随机推荐

  1. PHP消息队列实现

    一个经典的消息队列就是这样的,主要是入队出队操作. shell脚本日志输出 学习地址:http://www.imooc.com/article/19111

  2. SpringMVC中重定向传参数的方法

    在spring的一个controller中要把参数传到页面,只要配置视图解析器,把参数添加到Model中,在页面用el表达式就可以取到.但是,这样使用的是forward方式,浏览器的地址栏是不变的,如 ...

  3. iOS ---进阶之摇一摇

    1.摇一摇的原理分析 1)在摇动手机时会产生一个动画,界面的图片会在中间分开分别进行向上.向下的位置移动. 分析:此过程就是在主屏幕上设置两个imageView,在开始摇动的方法中对这两个imageV ...

  4. 数学规划求解器lp_solve超详细教程

    前言 最近小编学了运筹学中的单纯形法.于是,很快便按奈不住跳动的心.这不得不让我拿起纸和笔思考着,一个至关重要的问题:如何用单纯形法装一个完备的13? 恰巧,在我坐在图书馆陷入沉思的时候,一位漂亮的小 ...

  5. 递归实现快速幂(C++版)

    快速幂是什么? 顾名思义,快速幂就是快速算底数的n次幂.其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高. 就以a的b次方来介绍: 把b转换成二进制数,该二进制数第i位的权为 ...

  6. 4.1.1 Choosing the SST Donor

    摘要: 出处:黑洞中的奇点 的博客 http://www.cnblogs.com/kelvin19840813/ 您的支持是对博主最大的鼓励,感谢您的认真阅读.本文版权归作者所有,欢迎转载,但请保留该 ...

  7. linux 多线程之间信号传递

    函数 sigwait sigwait的含义就如同它的字面意思:等待某个信号的到来.如果调用该函数的线程没有等到它想等待的信号那么该线程就休眠.要达到等到一个信号,我们得做下面的事: 首先,定义一个信号 ...

  8. Sequential Minimal Optimization(SMO,序列最小优化算法)初探

    什么是SVM SVM是Support Vector Machine(支持向量机)的英文缩写,是上世纪九十年代兴起的一种机器学习算法,在目前神经网络大行其道的情况下依然保持着生命力.有人说现在是神经网络 ...

  9. Flask中路由系统以及蓝图的使用

    一.Flask的路由系统 1.@app.route()装饰器中的参数 methods:当前URL地址,允许访问的请求方式 @app.route("/info", methods=[ ...

  10. PHP队列的实现 算法

    <?php /** * php队列算法 * * Create On 2010-6-4 * Author Been * QQ:281443751 * Email:binbin1129@126.co ...