http://www.lydsy.com/JudgeOnline/problem.php?id=3295

Description

对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数nm,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。

Output

输出包含m行,依次为删除每个元素之前,逆序对的个数。

Sample Input

5 4
1
5
3
4
2
5
1
4
2

Sample Output

5
2
2
1

——————————————————————————————

这题不开longlong成功见祖宗……

乍一看我们想不到CDQ,但是显然删除操作不好整,我们将删除变成插入,插入的时间点为t,插入的位置为p,插入的值为n。

则三元组(t,p,n)它的逆序对需要满足t0<t,p0<p,n0>n或者t0<t,p0>p,n0<n。

这不就成三维偏序了吗?解完之后求一遍前缀和即是答案。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
inline int read(){
int X=,w=; char ch=;
while(!isdigit(ch)) {w|=ch=='-';ch=getchar();}
while(isdigit(ch)) X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct del{
int t;
int p;
int n;
}q[N],tmp[N];
ll m,n,ans[N],pos[N],tree[N];
inline int lowbit(int t){return t&(-t);}
void add(int x,int y){//将a[x]+y
for(int i=x;i<=n;i+=lowbit(i))tree[i]+=y;
return;
}
ll query(int x){//1-x区间和
ll res=;
for(int i=x;i>;i-=lowbit(i))res+=tree[i];
return res;
}
void cdq(int l,int r){
if(l>=r)return;
int mid=(l+r)>>;
cdq(l,mid);cdq(mid+,r);
for(int i=l,j=l,p=mid+;i<=r;i++){
if(j<=mid&&(p>r||q[j].n>q[p].n))tmp[i]=q[j++];
else tmp[i]=q[p++];
}
for(int i=l;i<=r;i++){
q[i]=tmp[i];
if(q[i].t<=mid)add(q[i].p,);
else ans[q[i].t]+=query(q[i].p);
}
for(int i=l;i<=r;i++)if(q[i].t<=mid)add(q[i].p,-);
for(int i=r;i>=l;i--){
if(q[i].t<=mid)add(q[i].p,);
else ans[q[i].t]+=query(n)-query(q[i].p);
}
for(int i=l;i<=r;i++)if(q[i].t<=mid)add(q[i].p,-);
return;
}
bool vis[N];
int main(){
n=read();
m=read();
for(int i=;i<=n;i++)pos[read()]=i;
for(int i=n;i>=n-m+;i--){
q[i].t=i;
q[i].n=read();
q[i].p=pos[q[i].n];
vis[q[i].n]=;
}
int cnt=n-m;
for(int i=;i<=n;i++){
if(!vis[i]){
q[cnt].t=cnt;
q[cnt].n=i;
q[cnt--].p=pos[i];
}
}
cdq(,n);
for(int i=;i<=n;i++)ans[i]+=ans[i-];
for(int i=n;i>=n-m+;i--)printf("%lld\n",ans[i]);
return ;
}

BZOJ3295:[CQOI2011]动态逆序对——题解的更多相关文章

  1. bzoj3295 [Cqoi2011]动态逆序对 cdq+树状数组

    [bzoj3295][Cqoi2011]动态逆序对 2014年6月17日4,7954 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数. ...

  2. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

  3. BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治

    题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 1 ...

  4. bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)

    3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...

  5. bzoj3295[Cqoi2011]动态逆序对 树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5987  Solved: 2080[Submit][Sta ...

  6. 2018.07.01 BZOJ3295: [Cqoi2011]动态逆序对(带修主席树)

    3295: [Cqoi2011]动态逆序对 **Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j& ...

  7. bzoj千题计划146:bzoj3295: [Cqoi2011]动态逆序对

    http://www.lydsy.com/JudgeOnline/problem.php?id=3295 正着删除看做倒着添加 对答案有贡献的数对满足以下3个条件: 出现时间:i<=j 权值大小 ...

  8. BZOJ3295: [Cqoi2011]动态逆序对(树状数组套主席树)

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7465  Solved: 2662[Submit][Sta ...

  9. [bzoj3295][Cqoi2011]动态逆序对_主席树

    动态逆序对 bzoj-3295 Cqoi-2011 题目大意:题目链接. 注释:略. 想法:直接建立主席树. 由于是一个一个删除,所以我们先拿建立好的root[n]的权值线段树先把总逆序对求出来,接着 ...

随机推荐

  1. R的数据结构

    R语言中的数据结构包括标量.向量.矩阵.数组.列表以及数据框 目录 1 向量 2 矩阵 3 数据框 1 向量 向量是用于存储单一数据类型(数值.字符.逻辑值)的一维数组,示例如下: a <- c ...

  2. Python中的装饰器的使用及固定模式

    装饰器的使用: 在不想修改函数的调用方式,但是想给函数添加内容的功能的时候使用     为什么使用装饰器: 软件实体应该是可扩展,而不可修改的.也就是说,对扩展是开放的,而对修改是封闭的. 因此,引出 ...

  3. LUIS 语义识别API调用方法

    本例使用itchat获取微信文字消息,发送给LUIS返回识别消息,再将返回消息格式化后通过微信发回 关于itchat的使用参考我的另外一篇随笔itchat个人练习 语音与文本图灵测试例程 # -*- ...

  4. Lua学习笔记(5): 表

    表的初始化方式 表的索引类型一般有两种,一种是通过标识符访问,一种是通过数字访问 --通过标识符访问的表的初始化 table1 = {key_1 = "haha", key_2 = ...

  5. 【第八章】MySQL数据库备份—逻辑备份

    一.数据库备份 1.命令简介: # mysqldump -h 服务器 -u用户名 -p密码 数据库名 > 备份文件.sql1)关于数据库名: -A, --all-databases       ...

  6. Python基础灬函数(定义,参数)

    函数 函数定义 # 定义一个计算绝对值的函数 def cal_abs(x): if x >= 0: return x else: return -x # 调用函数 print('-1的绝对值是: ...

  7. Qt应用程序重启

    重启应用程序是一种常见的操作,在Qt中实现非常简单,需要用到QProcess类一个静态方法: // program, 要启动的程序名称 // arguments, 启动参数 bool startDet ...

  8. 随机生成30道四则运算-NEW

    补充:紧跟上一个随机生成30道四则运算的题目,做了一点补充,可以有真分数之间的运算,于是需要在原来的基础上做一些改进. 首先指出上一个程序中的几个不足:1.每次执行的结果都一样,所以不能每天给孩子出3 ...

  9. 团队Alpha冲刺(二)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...

  10. emacs编译整个emacs.d目录

    $emacs 在emacs查看里面,输入: C-u M-x byte-recompile-directory 然后输入 ~/.emacs.d 即可.