link

试题分析

做这种题就应该去先写个暴力代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int N=;
int w[N],n,f[N],deep[N],sum,s[N],p[N],k[N];
int calc(int l,int r){
return (p[r]-p[l-])-deep[r]*(k[r]-k[l-]);
}
int main(){
// freopen("5.in","r",stdin);
memset(f,/,sizeof(f));f[]=;
n=read();
for(int i=;i<=n;i++) w[i]=read(),deep[i]=read();
for(int i=n;i>=;i--) deep[i]+=deep[i+];
n++;
for(int i=;i<=n;i++) s[i]=w[i]*deep[i];
for(int i=;i<=n;i++) p[i]=p[i-]+s[i];
for(int i=;i<=n;i++) k[i]=k[i-]+w[i];
for(int i=;i<=n;i++){
for(int j=;j<i;j++){
f[i]=min(f[i],-deep[j]*k[j]-deep[i]*k[i]+deep[i]*k[j]+deep[n]*k[i]);
}
}
int maxn=INT_MAX;
for(int i=;i<=n;i++) maxn=min(maxn,f[i]);cout<<maxn-deep[n]*k[n]+p[n];
}

1

然后再把calc放在里面,把无用的东西提出去。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int N=;
int w[N],n,f[N],deep[N],sum,s[N],p[N],k[N];
int calc(int l,int r){
return (p[r]-p[l-])-deep[r]*(k[r]-k[l-]);
}
int main(){
// freopen("5.in","r",stdin);
memset(f,/,sizeof(f));f[]=;
n=read();
for(int i=;i<=n;i++) w[i]=read(),deep[i]=read();
for(int i=n;i>=;i--) deep[i]+=deep[i+];
n++;
for(int i=;i<=n;i++) s[i]=w[i]*deep[i];
for(int i=;i<=n;i++) p[i]=p[i-]+s[i];
for(int i=;i<=n;i++) k[i]=k[i-]+w[i];
for(int i=;i<=n;i++){
for(int j=;j<i;j++){
f[i]=min(f[i],-deep[j]*k[j]+deep[i]*k[j]);
}
}
int maxn=INT_MAX;
for(int i=;i<=n;i++) maxn=min(maxn,f[i]-deep[i]*k[i]+deep[n]*k[i]);cout<<maxn-deep[n]*k[n]+p[n];
}

2

然后再斜率优化一下,因为我维护的是最大值,所以维护一个上凸壳即可

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<climits>
#define int long long
using namespace std;
inline int read(){
int f=,ans=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){ans=ans*+c-'';c=getchar();}
return f*ans;
}
const int N=;
int w[N],n,f[N],deep[N],sum,s[N],p[N],k[N],l,r,que[N],X[N],Y[N],minn=LLONG_MAX;
signed main(){
// freopen("5.in","r",stdin);
memset(f,/,sizeof(f));f[]=;
n=read();
for(int i=;i<=n;i++) w[i]=read(),deep[i]=read();
for(int i=n;i>=;i--) deep[i]+=deep[i+];
n++;
for(int i=;i<=n;i++) s[i]=w[i]*deep[i];
for(int i=;i<=n;i++) p[i]=p[i-]+s[i];
for(int i=;i<=n;i++) k[i]=k[i-]+w[i];
l=r=,que[]=;Y[]=deep[]*k[],X[]=k[];
for(int i=;i<=n;i++){
while(l<r&&Y[que[l+]]-Y[que[l]]>=deep[i]*(X[que[l+]]-X[que[l]])) l++;
f[i]=deep[i]*k[que[l]]-deep[que[l]]*k[que[l]];
X[i]=k[i],Y[i]=deep[i]*k[i];
while(l<r&&(Y[que[r]]-Y[que[r-]])*(X[i]-X[que[r]])<=(X[que[r]]-X[que[r-]])*(Y[i]-Y[que[r]])) r--;
que[++r]=i;
}
for(int i=;i<=n;i++) minn=min(minn,f[i]-deep[i]*k[i]+deep[n]*k[i]);printf("%lld\n",minn-deep[n]*k[n]+p[n]);
return ;
}

[CEOI2004]锯木厂选址的更多相关文章

  1. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  2. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  3. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  4. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

  5. cogs 362. [CEOI2004]锯木厂选址

    ★★★   输入文件:two.in   输出文件:two.out   简单对比 时间限制:0.1 s   内存限制:32 MB 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来. ...

  6. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  7. LG4360 [CEOI2004]锯木厂选址

    题意 原题来自:CEOI 2004 从山顶上到山底下沿着一条直线种植了 n 棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能朝山下运.山脚下有一个锯木厂 ...

  8. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  9. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  10. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

随机推荐

  1. Python基本编程题

    问题1:仅使用 Python 基本语法,即不使用任何模块,编写 Python 程序计算下列数学表达式的结果并输出,小数点后保留3位.‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬ ...

  2. sql server 批量备份数据库

    很多时候,我们都需要将数据库进行备份,当服务器上数据库较多时,不可能一个数据库创建一个定时任务进行备份,这时,就需要进行批量的数据库备份操作,好了,废话不多说,具体实现语句如下: --开启文件夹权限 ...

  3. 面向英特尔® x86 平台的 Unity* 优化指南: 第 1 部分

    原文地址 目录 工具 Unity 分析器 GPA 系统分析器 GPA 帧分析器 如要充分发挥 x86 平台的作用,您可以在项目中进行多种性能优化,以最大限度地提升性能. 在本指南中,我们将展示 Uni ...

  4. Matlab中 .' 的作用。

    Syntax B = A.' B = transpose(A)   Description B = A.' returns the nonconjugate transpose of A, that ...

  5. [redis] linux下主从篇(2)

    一.前言1.为何要主从架构避免单机故障,主服务器挂掉后,还可以手动切换从服务为主服务继续工作,保持缓存数据完整. 2.主从同步的原理步骤从服务器连接主服务器,发送SYNC命令:主服务器接收到SYNC命 ...

  6. Python Pygame (3) 界面显示

    显示模式: 之前使display模块的set_mode()的方法用来指定界面的大小,并返回一个Surface对象. set_mode()的原型如下: display.set_mode(resoluti ...

  7. Dijkstra 最短路径算法 秒懂详解

    想必大家一定会Floyd了吧,Floyd只要暴力的三个for就可以出来,代码好背,也好理解,但缺点就是时间复杂度高是O(n³). 于是今天就给大家带来一种时间复杂度是O(n²),的算法:Dijkstr ...

  8. 20162328蔡文琛 week06 大二

    20162328 2017-2018-1 <程序设计与数据结构>第6周学习总结 教材学习内容总结 队列元素按FIFO的方式处理----最先进入的元素最先离开. 队列是保存重复编码k值得一种 ...

  9. 关于mysql无法添加中文数据的问题以及解决方案

    今天弄了一天的mysql数据库,就是被一个mysql数据库乱码的问题给缠住了.现在记录一下这个问题,虽然这个问题不是什么太大的事情,但还是记录一下. 问题是这样的: 1.先在mysql的安装文件当中, ...

  10. alpha冲6

    队名:日不落战队 安琪(队长) 今天完成的任务 回收站前端界面. 明天的计划 查看个人信息界面. 还剩下的任务 信息修改前端界面. 设置界面. 遇到的困难 模拟机莫名其妙就崩了,调试了很久,后在队友的 ...