【BZOJ2727】双十字(动态规划,树状数组)
【BZOJ2727】双十字(动态规划,树状数组)
题面
题解
我们去年暑假的时候考试考过。
我当时写了个大暴力混了\(70\)分。。。。
大暴力是这么写的:
预处理每个位置向左右/上/下能够拓展的最多的长度(左右相当于分别求然后取\(min\))
接着枚举双十字的中轴线,所在的列
然后枚举上面那一行,枚举下面那一行。
那么,贡献显然是上面选择的左右长度\(*\)下面可以选择的左右长度\(*\)上下两行分别向上/下拓展的长度。
发现复杂度瓶颈在于枚举完上面那一行之后又去枚举下面那一行。
这个东西显然可以前缀和优化,那么每次修改都是一个区间加法,并且还是加等差数列。
线段树或者树状数组就好啦?
线段树怎么维护可以参考洛谷上那道无聊的数列
树状数组的做法,首先要知道怎么维护区间加法
核心思想是差分。
我们要加一个等差数列,如果只进行一次差分,那么就是给差分数组做区间加法。
这样显然还不行,所以我们对于差分数组再差分一次,假设得到的数组是\(c_i\),原数组是\(a_i\),差分一次的结果是\(b_i\)
那么
\sum_{i=1}^xa_i&=\sum_{i=1}^x\sum_{j=1}^ib[i]\\
&=\sum_{i=1}^x(x-i+1)b[i]\\
&=\sum_{i=1}^x(x-i+1)\sum_{j=1}^ic[i]\\
&=\sum_{i=1}^xc[i]\sum_{j=i}^x(x-j+1)\\
&=\sum_{i=1}^xc[i]\times\frac{1}{2}(n-i+2)(n-i+1)\\
&=\frac{1}{2}\sum_{i=1}^xc[i]((n^2+3n+2)-(i^2+(2n+3)i))
\end{aligned}
\]
用树状数组维护\(c[i],ic[i],i^2c[i]\)即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define RG register
#define MAX 1500000
#define MOD 1000000009
#define inv2 500000005
#define id(x,y) ((x-1)*m+y)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
bool vis[MAX];
int n,m,L[MAX],U[MAX],D[MAX],ans,K;
int c1[MAX],c2[MAX],c3[MAX];
inline int lb(int x){return x&(-x);}
void modify(int x,int w)
{
for(int i=x;i<=m;i+=lb(i))
{
add(c1[i],w);
add(c2[i],1ll*x*w%MOD);
add(c3[i],1ll*x*x%MOD*w%MOD);
}
}
int getsum(int x)
{
int s1=0,s2=0,s3=0,ret=0;
for(int i=x;i;i-=lb(i))
add(s1,c1[i]),add(s2,c2[i]),add(s3,c3[i]);
add(ret,(1ll*(x+3)*x%MOD+2)*s1%MOD);add(ret,s3);
add(ret,MOD-1ll*(x+x+3)*s2%MOD);
ret=1ll*ret*inv2%MOD;
return ret;
}
void modify(int l,int r,int w){modify(l,w);modify(r+1,MOD-w);}
void init(){for(int i=1;i<=m;++i)c1[i]=c2[i]=c3[i]=0;}
int main()
{
n=read();m=read();K=read();
for(int i=1;i<=n*m;++i)vis[i]=true;
while(K--)vis[id(read(),read())]=false;
for(int i=1;i<=n;++i)//Left
{
int s=0,now=(i-1)*m+1;
for(int j=1;j<=m;++j,++now)
{
s=vis[now]?s+1:0;
L[now]=s;
}
}
for(int i=1;i<=n;++i)//Right
{
int s=0,now=i*m;
for(int j=m;j>=1;--j,--now)
{
s=vis[now]?s+1:0;
L[now]=min(L[now],s);if(L[now])--L[now];
}
}
for(int j=1;j<=m;++j)//Up
{
int s=0,now=j;
for(int i=1;i<=n;++i,now+=m)
{
s=vis[now]?s+1:0;
U[now]=s;if(U[now])--U[now];
}
}
for(int j=1;j<=m;++j)//Down
{
int s=0,now=id(n,j);
for(int i=n;i>=1;--i,now-=m)
{
s=vis[now]?s+1:0;
D[now]=s;if(D[now])--D[now];
}
}
for(int j=2;j<m;++j,init())
for(int i=3;i<n;++i)
{
int u=id(i,j);
if(!vis[u]){init();continue;}
if(L[u])add(ans,1ll*D[u]*getsum(L[u]-1)%MOD);
modify(1,L[u-m],U[u-m]);
}
printf("%d\n",ans);
return 0;
}
【BZOJ2727】双十字(动态规划,树状数组)的更多相关文章
- 【bzoj1109】[POI2007]堆积木Klo 动态规划+树状数组
题目描述 Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体.每个积木上面都有一个数.Mary用他的所有积木垒了一个高塔.妈妈告诉Mary游戏的目的是建一个塔,使得最多的积木在正确的位置 ...
- BZOJ 2727 双十字(树状数组)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2727 题意: 思路:思路来自这里.首先对于每个位置(i,j)用C[i][j]表示该位置同 ...
- 2015 CCPC-C-The Battle of Chibi (UESTC 1217)(动态规划+树状数组)
赛后当天学长就说了树状数组,结果在一个星期后赖床时才有了一点点思路…… 因为无法提交,不确定是否正确..嗯..有错希望指出,谢谢... 嗯..已经A了..提交地址http://acm.uestc.ed ...
- BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...
- BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...
- BZOJ1264 [AHOI2006]基因匹配Match 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1264 题意概括 给出两个长度为5*n的序列,每个序列中,有1~n各5个. 求其最长公共子序列长度. ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- #46 delete(动态规划+树状数组)
二维的dp非常显然,但这也没有什么优化的余地了. 注意到最后的方案中只有产生贡献的位置是有用的,剩下的部分可以在该范围内任意选取. 所以我们考虑设f[i]为i号位最后产生贡献的答案,则f[i]=max ...
- BZOJ 1264 AHOI2006 基因匹配Match 动态规划+树状数组
题目大意:给定n个数和两个长度为n*5的序列,每一个数恰好出现5次,求两个序列的LCS n<=20000.序列长度就是10W.朴素的O(n^2)一定会超时 所以我们考虑LCS的一些性质 LCS的 ...
- BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)
可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...
随机推荐
- jQuery Validate (登录页面相关验证)
$(function() { var submit = false; var superHtml = []; /** * 匹配企业帐号,以字母开头,长度在6-20之间,只能包含字符.数字和下划线. * ...
- equals和==方法比较(二)--Long中equals源码分析
接上篇,分析equals方法在Long包装类中的重写,其他类及我们自定义的类,同样可以根据需要重新equals方法. equals方法定义 equals方法是Object类中的方法,java中所有的对 ...
- MindMaster安装教程以及激活破解教程
原文地址:https://www.jianshu.com/p/16d2fc7d8e45 第一.激活必须首先断网 第二.运行安装程序,安装完成后先不要打开 第三.把Cracks文件夹下的文件复制到软件安 ...
- MySQL☞视图
emmm,我本来最先也没注意到视图,然后再某个群里突然说起了视图,吓得本菜鸟赶紧连牛的不敢吹了,只好去科普一下,才好继续去吹牛. 什么是视图: 视图是一张虚拟的表,从视图中查看一张或多张表中的数据. ...
- NO.06--聊一聊“币”吧!
近期博主更新的频率明显慢来 ,一来是最近的工作比较忙碌,几个项目几乎同时要上线.二来是在思考是不是把我平时生活中的一些事情写进来博客,不只是分享分享技术. 趁着区块链.比特币火爆,博主也算是略有涉猎, ...
- mongodb复制集部署文档
一.安装SNMP(新版mongodb需要此依赖安装) 安装snmp服务需要的rpm包: perl-Data-Dumper-2.145-3.el7.x86_64.rpm net-snmp-5.7.2-2 ...
- 天马行空-Ops平台建设概述
1 概述 什么是Ops平台,Ops平台的目标是什么,建设的考虑点有哪些?本章节以实际生活中医院的例子来进行各形象的阐述. 医院包含各种诊断治疗设备,病历库,医生.一个孕妇需要到医院 ...
- Loadrunner教程--常用操做流程
1loadrunner压力测试一般使用流程 1.1loadrunner压力测试原理 本质就是在loadrunner上模拟多个用户同时按固定行为访问web站点.其中固定行为在loadrunner中是通过 ...
- 75.[LeetCode] Sort Colors
Given an array with n objects colored red, white or blue, sort them in-place so that objects of the ...
- Selenium WebDriver 下 plugin container for firefox has stopped working
用selenium 的webdriver 和 firefox 浏览器做自动化测试,经常会出现 plugin container for firefox has stopped working 如下图所 ...