【SPOJ】QTREE6(Link-Cut-Tree)
【SPOJ】QTREE6(Link-Cut-Tree)
题面
题解
很神奇的一道题目
我们发现点有黑白两种,又是动态加边/删边
不难想到\(LCT\)
最爆力的做法,显然是每次修改单点颜色的时候
暴力修改当前点和它的父亲以及儿子之间的连边状态
但是这样显然是假的(菊花树了解一下)
怎么优化呢?
对于每次操作,我们考虑如何只修改一次。
对于树上的一个结点,如果只修改一次,显然是修改和其父亲的状态。
那么,我们在考虑\(LCT\)的连边操作的时候,
如果当前点变色,那么就只修改和它父亲的连边。
这样怎么算答案呢?
如果我们确定树是一棵有根树
那么,我们只需要找到当前点深度最浅的父亲
这个父亲在当前颜色的树上的儿子个数显然就是答案
所以,我们只需要每次只修改当前点和其父亲的关系就行了。
但是要注意一个问题,因为强制是有根树了。
所以打死都不能有\(makeroot\)操作
所以\(link,cut\)之类的都要魔改一发了。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
#define ls (t[x].ch[0])
#define rs (t[x].ch[1])
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
struct Link_Cut_Tree
{
struct Node
{
int ch[2],ff;
int size,sum;
int rev;
}t[MAX];
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushup(int x){t[x].sum=t[ls].sum+t[rs].sum+t[x].size+1;}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void Splay(int x)
{
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[y].ch[0]==x)^(t[z].ch[0]==y)?rotate(x):rotate(y);
rotate(x);
}
pushup(x);
}
void access(int x)
{
for(int y=0;x;y=x,x=t[x].ff)
{
Splay(x);t[x].size+=t[rs].sum-t[y].sum;
rs=y;pushup(x);
}
}
void link(int x,int y){if(!y)return;access(y);Splay(x);Splay(y);t[x].ff=y;t[y].size+=t[x].sum;pushup(y);}
void cut(int x,int y){if(!y)return;access(x);Splay(x);ls=t[ls].ff=0;pushup(x);}
int findroot(int x){access(x);Splay(x);while(ls)x=ls;Splay(x);return x;}
}LCT[2];
int n,m,fa[MAX],c[MAX];
void dfs(int u,int ff)
{
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
LCT[1].link(v,u);fa[v]=u;
dfs(v,u);
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)c[i]=1;
for(int i=1,u,v;i<n;++i)u=read(),v=read(),Add(u,v),Add(v,u);
dfs(1,0);
m=read();
while(m--)
{
int opt=read(),x=read();
if(opt)LCT[c[x]].cut(x,fa[x]),c[x]^=1,LCT[c[x]].link(x,fa[x]);
else
{
LCT[c[x]].access(x);
int ff=LCT[c[x]].findroot(x);
if(c[ff]==c[x])printf("%d\n",LCT[c[x]].t[ff].sum);
else printf("%d\n",LCT[c[x]].t[LCT[c[x]].t[ff].ch[1]].sum);
}
}
return 0;
}
【SPOJ】QTREE6(Link-Cut-Tree)的更多相关文章
- 【SPOJ】Highways(矩阵树定理)
[SPOJ]Highways(矩阵树定理) 题面 Vjudge 洛谷 题解 矩阵树定理模板题 无向图的矩阵树定理: 对于一条边\((u,v)\),给邻接矩阵上\(G[u][v],G[v][u]\)加一 ...
- LCT(Link Cut Tree)总结
概念.性质简述 首先介绍一下链剖分的概念链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度.目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分. ...
- 【SPOJ】QTREE7(Link-Cut Tree)
[SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...
- 【SPOJ】Substrings(后缀自动机)
[SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...
- 【CF487E】Tourists(圆方树)
[CF487E]Tourists(圆方树) 题面 UOJ 题解 首先我们不考虑修改,再来想想这道题目. 我们既然要求的是最小值,那么,在经过一个点双的时候,走的一定是具有较小权值的那一侧. 所以说,我 ...
- 【CF17E】Palisection(回文树)
[CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文 ...
- 【BZOJ3160】万径人踪灭(FFT,Manacher)
[BZOJ3160]万径人踪灭(FFT,Manacher) 题面 BZOJ 题解 很容易想到就是满足条件的子序列个数减去回文子串的个数吧... 至于满足条件的子序列 我们可以依次枚举对称轴 如果知道关 ...
- 【BZOJ3944】Sum(杜教筛)
[BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...
- 【BZOJ3730】震波(动态点分治)
[BZOJ3730]震波(动态点分治) 题面 BZOJ 题意 给定一棵树, 每次询问到一个点的距离\(<=K\)的点的权值之和 动态修改权值, 强制在线 题解 正常的\(DP\)??? 很简单呀 ...
随机推荐
- 解决循环里map不被重复覆盖的问题
参考:https://blog.csdn.net/zyf642112750/article/details/78295113 这样就不会一直重复 项目管理系统 了
- 小白初识 - 快速排序(QuickSort)
我个人觉得快速排序和归并排序有相似之处,都是用到了分治的思想,将大问题拆分成若干个小问题. 不同的地方是归并排序是先把大问题拆分好了之后再排序,而快速排序则是一边拆分,一边排序. 快速排序的原理就是, ...
- 牛客网暑期ACM多校训练营(第四场):A Ternary String(欧拉降幂)
链接:牛客网暑期ACM多校训练营(第四场):A Ternary String 题意:给出一段数列 s,只包含 0.1.2 三种数.每秒在每个 2 后面会插入一个 1 ,每个 1 后面会插入一个 0,之 ...
- List Leaves 树的层序遍历
3-树2 List Leaves (25 分) Given a tree, you are supposed to list all the leaves in the order of top do ...
- 高可用Kubernetes集群-7. 部署kube-controller-manager
九.部署kube-controller-manager kube-controller-manager是Kube-Master相关的3个服务之一,是有状态的服务,会修改集群的状态信息. 如果多个mas ...
- openstack系列文章(三)
学习openstack的系列文章-glance glance 基本概念 glance 架构 openstack CLI Troubleshooting 1. glance 基本概念 在 opensta ...
- Dubbo背景和简介
转载出处 Dubbo开始于电商系统,因此在这里先从电商系统的演变讲起. 单一应用框架(ORM) 当网站流量很小时,只需一个应用,将所有功能如下单支付等都部署在一起,以减少部署节点和成本. 缺点:单一的 ...
- c# 画image
这是一个例子,从数据库中读取然后赋伪彩,生成bitmap,给到imagebox控件(其image属性为平铺). https://pan.baidu.com/s/1hf_fGFHjGoDK_gywuhg ...
- [pascal入门]数组
一.本节目标 本节我们将要讲述数组.本节目标: 一维数组 二维数组 字符数组 二.一维数组 我们通过一个案例来简单的理解数组.班主任要计算班级里面50个同学数学成绩的平均成绩,道理上讲这是一个比较简单 ...
- python获取前几天的时间
days的参数就是你想获取前多少天的数据,如果是昨天的话,则days=1 import datetime today=datetime.date.today() oneday=datetime.tim ...