先算出无限制的情况,再减去i==j的情况。

  无限制的情况很好算,有限制的情况需要将式子拆开。

  注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int mod=,six=;
int n,m,sumn,summ,l1,r1,l2,r2,l,r;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int solve(int n,int m)
{
int sum=;
for(int i=;i<=n;i=r+)
{
l=m/(m/i+)+;r=m/(m/i);
if(r>=n)r=n;
sum=MOD(sum+(1ll*(m/i)*(r-l+)%mod*(l+r)%mod*((mod+)>>)%mod));
}
return sum;
}
int pfh(int n){return 1ll*n%mod*(n+)%mod*(*n+)%mod*six%mod;}
int main()
{
read(n);read(m);
sumn=(1ll*n*n-solve(n,n))%mod;summ=(1ll*m*m-solve(m,m))%mod;
int sum=1ll*min(n,m)*n%mod*m%mod;
for(int i=;i<=min(n,m);i=r+)
{
r=min(n/(n/i),m/(m/i));
if(r>min(n,m))r=min(n,m);
sum=MOD(sum+1ll*(n/i)*(m/i)%mod*MOD(pfh(r)+mod-pfh(i-))%mod);
}
sum=(sum+mod-(1ll*m*solve(min(n,m),n)%mod)+mod-(1ll*n*solve(min(n,m),m)%mod))%mod;
printf("%lld\n",MOD(1ll*sumn*summ%mod+mod-sum));
}

bzoj2956: 模积和(数论)的更多相关文章

  1. BZOJ2956: 模积和(数论分块)

    题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...

  2. 【bzoj2956】模积和 数论

    题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...

  3. 【数论分块】bzoj2956: 模积和

    数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...

  4. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  5. BZOJ2956: 模积和

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  6. BZOJ2956: 模积和——整除分块

    题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...

  7. bzoj 2956: 模积和 ——数论

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  8. 【BZOJ2956】模积和 分块

    [BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...

  9. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

随机推荐

  1. maven 手动安装jar包

    1.问题 maven有时候在pom文件引入jar包会报错,所以可以通过手动导入jar包的方式导入. 2.解决: 通过maven命令导入jar包, mvn install:install-file -D ...

  2. php使用mysql之sql注入(功)

    sql注入就是用户通过构造sql语句,完成sql一系列操作 准备素材如下: 这是test.html <!DOCTYPE html> <html> <meta charse ...

  3. selenium 结合 docker 构建分布式测试环境 (初学者视角)

    前言:随着自动化测试越学越深,深深觉得有太多的东西需要总结. 1.记录下学习中遇到的坑,当做学习笔记.2.有前人路过看到文章中比较落后的做法,请务必一定要指教.(因为是初学者视角,很多东西只是走通而已 ...

  4. leetcode-下一个排列

    下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...

  5. VSCode打开已有vuejs项目

    转载自 https://blog.csdn.net/yoryky/article/details/78290443 下载安装并配置VSCode 随便百度上搜个最新的VSCode安装好后,点击Ctrl ...

  6. shell基础 -- 入门篇

    shell 英文含义是“壳”,这是相对于内核来说的,shell 也确实就像是内核的壳,通常来说,所有对内核的访问都要经由 shell .同时,shell 还是一门功能强大的编程语言.shell 是 L ...

  7. sklearn中的交叉验证(Cross-Validation)

    这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...

  8. Python最简编码规范

    前言 本文是阅读<Python Coding Rule>之后总结的最为精华及简单的编码规范,根据每个人不同喜好有些地方会有不同的选择,我只是做了对自己来说最简单易行的选择,仅供大家参考. ...

  9. rhel6 mysql skip-grant-tables 添加用户报错 ERROR 1290

    不小心把数据库密码忘掉了, 这个时候我们只需要在数据库的配置文件里面添加 skip-grant-tables 然后重新启动服务,再登录数据库就不要我们输入密码了 这个时候我成功登录数据,可是不小心又把 ...

  10. loadrunner--基础2

    LR11-03 一.并发测试(n VU) 1.并发测试两个条件 1)脚本中要有 集合点(并发点) 2)控制台中要设置并发策略(选择第一项,所有虚拟用户到达集合点后释放) 集合点: 5个线程,代表5个V ...