题意翻译

在Byteotia有n个城镇。 一些城镇之间由无向边连接。 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些)。每两个城镇之间至多只有一条直接连接的道路。人们可以从任意一个城镇直接或间接到达另一个城镇。 每个城镇都有一个公民,他们被孤独所困扰。事实证明,每个公民都想拜访其他所有公民一次(在主人所在的城镇)。所以,一共会有n*(n-1)次拜访。

不幸的是,一个程序员总罢工正在进行中,那些程序员迫切要求购买某个软件。

作为抗议行动,程序员们计划封锁一些城镇,阻止人们进入,离开或者路过那里。

正如我们所说,他们正在讨论选择哪些城镇会导致最严重的后果。

编写一个程序:

读入Byteotia的道路系统,对于每个被决定的城镇,如果它被封锁,有多少访问不会发生,输出结果。

输入输出格式

第一行读入n,m,分别是城镇数目和道路数目

城镇编号1~n

接下来m行每行两个数字a,b,表示a和b之间有有一条无向边

输出n行,每行一个数字,为第i个城镇被锁时不能发生的访问的数量。


题目描述

There are exactly nnn towns in Byteotia.

Some towns are connected by bidirectional roads.

There are no crossroads outside towns, though there may be bridges, tunnels and flyovers. Each pair of towns may be connected by at most one direct road. One can get from any town to any other-directly or indirectly.

Each town has exactly one citizen.

For that reason the citizens suffer from loneliness.

It turns out that each citizen would like to pay a visit to every other citizen (in his host's hometown), and do it exactly once. So exactly n⋅(n−1)n\cdot (n-1)n⋅(n−1) visits should take place.

That's right, should.

Unfortunately, a general strike of programmers, who demand an emergency purchase of software, is under way.

As an act of protest, the programmers plan to block one town of Byteotia, preventing entering it, leaving it, and even passing through.

As we speak, they are debating which town to choose so that the consequences are most severe.

Task Write a programme that:

reads the Byteotian road system's description from the standard input, for each town determines, how many visits could take place if this town were not blocked by programmers, writes out the outcome to the standard output.

给定一张无向图,求每个点被封锁之后有多少个有序点对(x,y)(x!=y,1<=x,y<=n)满足x无法到达y

输入输出格式

输入格式:

In the first line of the standard input there are two positive integers: nnn and mmm ( 1≤n≤100 0001\le n\le 100\ 0001≤n≤100 000 , 1≤m≤500 0001\le m\le 500\ 0001≤m≤500 000 ) denoting the number of towns and roads, respectively.

The towns are numbered from 1 to nnn .

The following mmm lines contain descriptions of the roads.

Each line contains two integers aaa and bbb ( 1≤a<b≤n1\le a<b\le n1≤a<b≤n ) and denotes a direct road between towns numbered aaa and bbb .

输出格式:

Your programme should write out exactly nnn integers to the standard output, one number per line. The ithi^{th}ith line should contain the number of visits that could not take place if the programmers blocked the town no. iii .

输入输出样例

输入样例#1:

5 5
1 2
2 3
1 3
3 4
4 5
输出样例#1:

8
8
16
14
8

Solution:

  Tarjan+简单数学。

  对于一个点,分两种情况判断:

    1、非割点,那么割掉改点会使得剩下的$n-1$个点与该点不联通,答案就是$2\times (n-1)$。

    2、割点,与其相连的割点对答案的贡献为$siz[v]\times (n-siz[v])$,非割点答案贡献为$(n-1-\sum{siz[v]})\times (1+\sum{siz[v]})$,最后还得算上该点减少的组合$n-1$。

  实现过程直接在tarjan求割点的同时,统计下子树大小,计算答案就好了。

代码:

/*Code by 520 -- 8.22*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
int n,m,low[N],dfn[N],siz[N],tot;
int to[N],net[N],h[N],cnt;
int scc,bl[N],stk[N],top;
ll ans[N];
bool cut[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'')x=getchar();
while(x>=''&&x<='')a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;} void tarjan(int u){
dfn[u]=low[u]=++tot,siz[u]=;
int ppx=,sum=;
for(RE int i=h[u];i;i=net[i])
if(!dfn[to[i]]){
tarjan(to[i]),
siz[u]+=siz[to[i]],
low[u]=min(low[u],low[to[i]]);
if(low[to[i]]>=dfn[u]){
ppx++;
ans[u]+=1ll*siz[to[i]]*(n-siz[to[i]]);
sum+=siz[to[i]];
if(u!=||ppx>) cut[u]=;
}
}
else low[u]=min(low[u],dfn[to[i]]);
if(cut[u]) ans[u]+=1ll*(n-sum-)*(sum+)+(n-);
else ans[u]=n-<<;
} il void init(){
n=gi(),m=gi();
int u,v;
For(i,,m) {
u=gi(),v=gi();
if(u!=v) add(u,v),add(v,u);
}
tarjan();
For(i,,n) printf("%lld\n",ans[i]);
} int main(){
init();
return ;
}

P3469 [POI2008]BLO-Blockade的更多相关文章

  1. BZOJ 1123: [POI2008]BLO

    1123: [POI2008]BLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 440[Submit][Status] ...

  2. BZOJ1123: [POI2008]BLO

    1123: [POI2008]BLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 614  Solved: 235[Submit][Status] ...

  3. BZOJ 1123: [POI2008]BLO( tarjan )

    tarjan找割点..不是割点答案就是(N-1)*2, 是割点的话就在tarjan的时候顺便统计一下 ------------------------------------------------- ...

  4. bzoj 1123 [POI2008]BLO Tarjan求割点

    [POI2008]BLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1540  Solved: 711[Submit][Status][Discu ...

  5. P3469 [POI2008]BLO-Blockade(Tarjan 割点)

    P3469 [POI2008]BLO-Blockade 题意翻译 在Byteotia有n个城镇. 一些城镇之间由无向边连接. 在城镇外没有十字路口,尽管可能有桥,隧道或者高架公路(反正不考虑这些).每 ...

  6. 洛谷 P3469 [POI2008]BLO-Blockade (Tarjan,割点)

    P3469 [POI2008]BLO-Blockade https://www.luogu.org/problem/P3469 题目描述 There are exactly nn towns in B ...

  7. [POI2008]BLO(Tarjan)

    [POI2008]BLO Description Byteotia城市有\(n\)个 towns \(m\)条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 所 ...

  8. [Luogu P3469] [POI2008]BLO-Blockade (割点)

    题面 传送门:https://www.luogu.org/problemnew/show/P3469 Solution 先跟我大声念: poi! 然后开始干正事. 首先,我们先把题目中的点分为两类:去 ...

  9. 【luogu P3469 [POI2008]BLO-Blockade】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3469 #include <cstdio> #include <cstring> #i ...

  10. [LUOGU] P3469 [POI2008]BLO-Blockade

    https://www.luogu.org/problemnew/show/P3469 求无向图分别删去每个点后不连通的点对数. 首先,对于任何一个点,它本身删了,就会和剩下的n-1个点不连通,点对是 ...

随机推荐

  1. 用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)

    用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最 ...

  2. rsync + inotify 数据实时同步

    一.rsync介绍 rsync英文全称为Remote synchronization,从软件的名称就可以看出来,Rsync具有可是本地和远程两台主机之间的数据快速复制同步镜像.远程备份的功能,这个功能 ...

  3. sqlserver安装遇到的问题——1

    SQL Server安装过无数次,今天第一次遇到这样的问题 一.问题消息复制出来是这样的 TITLE: Microsoft SQL Server 2008 R2 安装程序--------------- ...

  4. java 定义三分钟之前的时间

    public String getCurrentTime(){SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss ...

  5. Scrapy爬取美女图片续集 (原创)

    上一篇咱们讲解了Scrapy的工作机制和如何使用Scrapy爬取美女图片,而今天接着讲解Scrapy爬取美女图片,不过采取了不同的方式和代码实现,对Scrapy的功能进行更深入的运用.(我的新书< ...

  6. OAI搭建总结

    我是参考网上的方法:oai搭建之eNB的文章, 接下来就根据自身所遇到的问题再这里总结一下步骤: 一.再官网上下载oai的文件openairinterface5g-master.zip 二.编译的过程 ...

  7. [SHELL]查看端口,文件,服务关系的四个命令netstat,lsof,fuser,nmap

    一,netstat (1)简介 netstat主要是用来打印系统网络的状态信息,当输入netstat后,输出如下: 可以看出,netstat的输出分为两个部分组成: 一个是Active Interne ...

  8. JavaScript/Jquery:Validform 验证表单的相关属性解释

    当我们写提交表单的时候往往需要验证表单是否填写了内容,是否正确,这个插件可以很方便的完成我们需要的验证! 使用方法: 1.先引用js <script type="text/javasc ...

  9. Python3 迭代器和生成器

    想要搞明白什么是迭代器,首先要了解几个名词:容器(container).迭代(iteration).可迭代对象(iterable).迭代器(iterator).生成器(generator). 看图是不 ...

  10. 软工1816 · Alpha冲刺(7/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 学会了POSTMAN的使用,对后端已经完成的接口进行了收发消息正确性的验证 推 ...