题意:现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。
但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N];
int head[N], cnt=;
int W[N], V[N], D[N], cost[N], val[N], dp[N][], m;
int Low[N], DFN[N], Stack[N], Belong[N], dee[N], Index, top, scc;
bool Instack[N], vis[N][N];
VI E[N]; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void Tarjan(int u){
int v;
Low[u]=DFN[u]=++Index; Stack[top++]=u; Instack[u]=true;
for (int i=head[u]; i; i=edge[i].next) {
v=edge[i].p;
if (!DFN[v]) {
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Instack[v]&&Low[u]>DFN[v]) Low[u]=DFN[v];
}
if (Low[u]==DFN[u]) {
++scc;
do{
v=Stack[--top]; Instack[v]=false; Belong[v]=scc; cost[scc]+=W[v]; val[scc]+=V[v];
}while (v!=u);
}
}
void solve(int n){
mem(DFN,); mem(Instack,false); Index=scc=top=;
FOR(i,,n) if (!DFN[i]) Tarjan(i);
}
void dfs(int x){
FO(i,,E[x].size()) {
int v=E[x][i];
dfs(v);
for (int j=m; j>=; --j) FOR(k,cost[v],j) dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[v][k]);
}
for (int i=m; i>=cost[x]; --i) dp[x][i]=dp[x][i-cost[x]]+val[x];
}
int main ()
{
int n;
scanf("%d%d",&n,&m);
FOR(i,,n) scanf("%d",W+i);
FOR(i,,n) scanf("%d",V+i);
FOR(i,,n) {
scanf("%d",D+i);
if (D[i]) add_edge(D[i],i);
}
solve(n);
FOR(i,,n) {
int u=Belong[i];
for (int j=head[i]; j; j=edge[j].next) {
int v=Belong[edge[j].p];
if (u==v||vis[u][v]) continue;
E[u].pb(v); vis[u][v]=true; ++dee[v];
}
}
FOR(i,,scc) if (!dee[i]) E[].pb(i);
dfs();
printf("%d\n",dp[][m]);
return ;
}


我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

依照依赖关系可以建一个图,这个图中每个点的入度至多1,不难发现,这是一些环加上树组成的森林,对于环,要么不选要么都选,于是可以把环缩点。

这样原图就变成了一个有向森林,对于每个根节点,我们建立一个虚拟节点连向这些节点,于是就变成了一颗树。

在树上做树形依赖背包即可,定义dp[x][v]表示x的子树占用了v的内存能产生的最大价值。转移方程很简单。

时间复杂度O(n^2*m).

BZOJ 2427 软件安装(强连通分量+树形背包)的更多相关文章

  1. [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP

    题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  2. bzoj 2427 软件安装 - Tarjan - 树形动态规划

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  3. [BZOJ 2427] 软件安装

    Link: BZOJ 2427 传送门 Solution: 只看样例的话会以为是裸的树形$dp$…… 但实际上题目并没有说明恰好仅有一个物品没有依赖项 因此原图可能由是由多棵树与多个图组成的 先跑一遍 ...

  4. bzoj 2427: [HAOI2010]软件安装【tarjan+树形dp】

    一眼最大权闭合子图,然后开始构图,画了画之后发现我其实是个智障网络流满足不了m,于是发现正确的打开方式应该是一眼树上dp 然后仔细看了看性质,发现把依赖关系建成图之后是个奇环森林,这个显然不能直接dp ...

  5. bzoj2427 [HAOI2010]软件安装——缩点+树形DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2427 今天的考试题...好不容易一次写对了树形DP,却没发现有环的情况... 发现自己 ta ...

  6. 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)

    题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...

  7. BZOJ 2427 [HAOI2010]软件安装 | 这道树形背包裸题严谨地证明了我的菜

    传送门 BZOJ 2427 题解 Tarjan把环缩成点,然后跑树形背包即可. 我用的树形背包是DFS序上搞的那种. 要注意dp数组初始化成-INF! 要注意dp顺推的时候也不要忘记看数组是否越界! ...

  8. BZOJ 2427: [HAOI2010]软件安装 tarjan + 树形背包

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  9. bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp

    [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2029  Solved: 811[Submit][Status][Dis ...

随机推荐

  1. PHP学习笔记之interface关键字

    interface用于定义接口 接口里边的方法不需要有方法的实现 implements用于表示类实现某个接口 实现了某个接口之后,必须提供接口中定义的方法的具体实现. 可以用instanceof关键字 ...

  2. 考研编程练习---StringMatching(后缀表达式)

    题目描述: Finding all occurrences of a pattern in a text is a problem that arises frequently in text-edi ...

  3. echarts 去掉最外部边框

    在option中,插入一下代码即可: grid: {show:'true',borderWidth:'0'}, 插入代码前: 插入代码后:

  4. 2.Rest Server提供数据库的Json字符串

    Delphi最大的特点是数据库操作便捷.为了能够给App提供数据,这里采用Rest Server后台,然后在用Json文件发送到APP前台. 1.后台的dataset转换为json. 这里百度后就可以 ...

  5. checkpoint process vs writer process vs wal writer process

    开始 我目前的理解是: 如果我执行了一条SQL文,那么 先是相关数据写到  wal buffer里, 然后再写到 data  buffer(shared_buffer)里. 这之后, 由于wal wr ...

  6. 三、Django之请求与响应-Part 1

    一.新建项目 进入你指定的项目保存目录,然后运行下面的命令: $ django-admin startproject mysite 这将在目录下生成一个mysite目录,也就是你的这个Django项目 ...

  7. 【java请求】- jmeter_jdbc脚本实战

    一,导入 使用Jmeter运行Java脚本,需要用到Jmeter的提供的框架jar包(分别在jmeter目录下的lib和ext目录下)1.ApacheJMeter_core.jar2.ApacheJM ...

  8. 【sed】常用命令

    替换 替换某一整行 sed '1c hello' test #将第一行替换为hello str1替换为str2 sed 's/^str1.*/str2/' filename #以str1开头 sed ...

  9. 【RL系列】从蒙特卡罗方法步入真正的强化学习

    蒙特卡罗方法给我的感觉是和Reinforcement Learning: An Introduction的第二章中Bandit问题的解法比较相似,两者皆是通过大量的实验然后估计每个状态动作的平均收益. ...

  10. 常用DOS指令备忘

    1.删除整个目录,包括空目录 rd D:\管理\2012新同学练习\.svn /s/q /s 删除当前目录及子目录 /q 不询问直接删除 2.拷贝目录树 xcopy D:\管理\2012新同学练习 E ...