题目描述

n 个沙茶,被编号 1~n。排完队之后,每个沙茶希望,自己的相邻的两人只要无一个人的编号和自己的编号相差为 1(+1 或-1)就行; 
现在想知道,存在多少方案满足沙茶们如此不苛刻的条件。 

输入

只有一行且为用空格隔开的一个正整数 N,其中 100%的数据满足 1≤N ≤ 1000; 

输出

一个非负整数,表示方案数对 7777777 取模。   

样例输入

4

样例输出

2


题解

dp

老套路了,考虑把数从小到大插入的过程进行dp。

设 $f[i][j]$ 表示 $1\sim i$ 的排列,有 $j$ 组相邻的相差1,且 $i$ 和 $i-1$ 不相邻的方案数;
设 $g[i][j]$ 表示 $1\sim i$ 的排列,有 $j$ 组相邻的相差1,且 $i$ 和 $i-1$ 相邻的方案数。

那么考虑插入 $i+1$ 的位置,有:不破坏空位且不与 $i$ 相邻、不破坏空位且与 $i$ 相邻、破坏空位且不与 $i$ 相邻、破坏空位且与 $i$ 相邻(只发生在 $g$ 的转移)4种。分别推一下方案数即可。

最后的答案就是 $f[n][0]$ 。

时间复杂度 $O(n^2)$ 。

另外把前几项丢到oeis上可以得到线性递推式 $a_n=(n+1)a_{n-1}-(n-2)a_{n-2}-(n-5)a_{n-3}+(n-3)a_{n-4}$ ,就能 $O(n)$ 求解了,感觉像是某容斥然而并不能推出来...

#include <cstdio>
#define mod 7777777
long long f[1010][1010] , g[1010][1010];
int main()
{
int n , i , j;
scanf("%d" , &n);
f[1][0] = 1;
for(i = 1 ; i < n ; i ++ )
{
for(j = 0 ; j < i ; j ++ )
{
f[i + 1][j] = (f[i + 1][j] + f[i][j] * (i - j - 1)) % mod;
g[i + 1][j + 1] = (g[i + 1][j + 1] + f[i][j] * 2) % mod;
if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + f[i][j] * j) % mod;
f[i + 1][j] = (f[i + 1][j] + g[i][j] * (i - j)) % mod;
g[i + 1][j + 1] = (g[i + 1][j + 1] + g[i][j]) % mod;
if(j) f[i + 1][j - 1] = (f[i + 1][j - 1] + g[i][j] * (j - 1)) % mod;
g[i + 1][j] = (g[i + 1][j] + g[i][j]) % mod;
}
}
printf("%lld\n" , f[n][0]);
return 0;
}

【bzoj4321】queue2 dp的更多相关文章

  1. #6【bzoj4321】queue2 dp

    题目描述 n 个沙茶,被编号 1~n.排完队之后,每个沙茶希望,自己的相邻的两人只要无一个人的编号和自己的编号相差为 1(+1 或-1)就行:  现在想知道,存在多少方案满足沙茶们如此不苛刻的条件.  ...

  2. LG4719 【模板】动态dp 及 LG4751 动态dp【加强版】

    题意 题目描述 给定一棵\(n\)个点的树,点带点权. 有\(m\)次操作,每次操作给定\(x,y\),表示修改点\(x\)的权值为\(y\). 你需要在每次操作之后求出这棵树的最大权独立集的权值大小 ...

  3. 【专题】数位DP

    [资料] ★记忆化搜索:数位dp总结 之 从入门到模板 by wust_wenhao 论文:浅谈数位类统计问题 数位计数问题解法研究 [记忆化搜索] 数位:数字从低位到高位依次为0~len-1. 高位 ...

  4. 洛谷P4719 【模板】"动态 DP"&动态树分治

    [模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上 ...

  5. LG5056 【模板】插头dp

    题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...

  6. 【专题】区间dp

    1.[nyoj737]石子合并 传送门:点击打开链接 描述    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这 ...

  7. 【BZOJ4976】宝石镶嵌 DP

    [BZOJ4976]宝石镶嵌 Description 魔法师小Q拥有n个宝石,每个宝石的魔力依次为w_1,w_2,...,w_n.他想把这些宝石镶嵌到自己的法杖上,来提升法杖的威力.不幸的是,小Q的法 ...

  8. NOJ 1111 保险箱的密码 【大红】 [区间dp]

    传送门 保险箱的密码 [大红] 时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte总提交 : 118            测 ...

  9. 【CF480D】Parcels DP

    [CF480D]Parcels 题意:有一个栈,有n个物品,每个物品可以选或不选.如果选了第i个物品,则获得$v_i$的收益,且第i个物品必须在$in_i$时刻入栈,$out_i$时刻出栈.每个物品还 ...

随机推荐

  1. C语言复习20170821

    函数 函数头部参数表里的变量称为形参,也是内部变量,只能在函数体内访问. 形参的作用是实现主调函数与被调函数之间的联系,通常将函数所处理的数据,影响函数功能的因素或者函数处理的结果作为形参.没有形参的 ...

  2. 【SHOI2008】堵塞的交通

    题面 题解 这里提供几种不用脑子的算法(当然是离线的): $\text{LCT}$ 记下每条边的删除时间,用$\text{LCT}$维护最大生成树,每次加进一条边时,跟原来那条链上的做比较,删除那条删 ...

  3. 安装centos minimal 版本后安装mysql详细过程(linux)

    本文内容参考自:http://www.centoscn.com/mysql/2014/1211/4290.html PS:Yum(全称为 Yellow dog Updater, Modified)是一 ...

  4. Maven学习(十二)-----Maven POM

    Maven POM POM代表项目对象模型.它是 Maven 中工作的基本单位,这是一个 XML 文件.它始终保存在该项目基本目录中的 pom.xml 文件.POM 包含的项目是使用 Maven 来构 ...

  5. 三、利用EnterpriseFrameWork快速开发Winform系统(C/S)

    EnterpriseFrameWork框架实例源代码下载: 实例下载 上一章讲解了开发Web系统的详细步骤,以书籍的管理作实例实现对书籍的增.删.改.查功能,本章接着上面的实例继续补充用Winform ...

  6. Java的安装与配置

    安装JAVA 下载JAVA JDK安装包,JDK是Java Development Kit的缩写,即开发工具包,里面包含了平时用户用到的JRE,也就是Java Runtime Enviroment运行 ...

  7. R小问题

    步骤 > library(xlsx) > test<-read.csv("I:/山农大学大数据中心/柱状图/z7.csv") > data1=test[] ...

  8. windows下Mongodb图形化工具安装及配置

    接上篇文章<Windows下Mongodb安装部署.docx> 一.RockMongo 1.RockMongo需要php环境,首先需要搭建php环境,选择采用 下载xampp,这里我用的是 ...

  9. Nginx内容缓存

    本节介绍如何启用和配置从代理服务器接收的响应的缓存.主要涉及以下内容 - 缓存介绍 启用响应缓存 涉及缓存的NGINX进程 指定要缓存的请求 限制或绕过缓存 从缓存中清除内容 配置缓存清除 发送清除命 ...

  10. 【python 3.6】调用另一个文件的类的方法

    文件1:test12.py 文件2:test13.py 文件1 如下: #!/usr/bin/python # -*- coding: utf-8 -*- ''' ''' class abcd(obj ...