给定一一个n个点m条边的加权有向图, 平均值最小的回路。

二分答案,对于每个二分的mid 做一次Bellman-Fprd , 假设有k条边组成的回路。 回路上各条边的权值为  w1 , w2 ..wk ,

那么平均值小于mid意味着w1+w2+w3..+wk< k*mid 即:

(w1 - min)+(w2-mid)+...+(w2-mid)<0;

也就是说 这k条边能组成 一个负环,用 Bellman_Ford 来检查

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <vector>
#include <queue>
#include <cmath>
using namespace std;
const int maxn = ;
int cmp(double a ,double b){
if(fabs(a-b)<=0.00000001) return ;
return a-b>?:-;
}
struct Edge{
int from,to;
double dist;
};
struct BellmanFord{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
double d[maxn];
int p[maxn];
int cnt[maxn];
void inti(int n){
m=;
this->n = n;
for(int i=; i<n; ++i ) G[i].clear();
edges.clear();
}
void AddEdge(int form, int to, double dist){
edges.push_back((Edge){form,to,dist});
m =edges.size();
G[form].push_back(m-);
}
bool negativeCycle(){
queue<int> Q;
memset(inq, , sizeof(inq));
memset(cnt, , sizeof(cnt));
for(int i=; i < n; ++i) { d[i] =; inq[i] = true; Q.push(i);}
while(!Q.empty()){
int u = Q.front(); Q.pop();
inq[u] = false;
for(int i=; i<G[u].size(); i++){
Edge &e = edges[G[u][i]];
if(cmp(d[e.to] , d[u] + e.dist)>){
d[e.to] = d[u] +e.dist;
p[e.to] = G[u][i];
if(!inq[e.to]){
Q.push(e.to); inq[e.to] = true;
if(++cnt[e.to]>n) return true;
}
}
}
}
return false;
}
}solver;
bool test(double x){
for(int i=; i<solver.m; i++){
solver.edges[i].dist-=x;
}
bool ret = solver.negativeCycle();
for(int i= ; i<solver.m; i++)
solver.edges[i].dist+=x;
return ret;
}
int main()
{
int T;
scanf("%d",&T);
for(int kase =; kase<=T; kase++){
int n,m;
scanf("%d%d",&n,&m);
solver.inti(n);
int ub =;
while(m--){
int u,v,w;
scanf("%d%d%d",&u,&v,&w); u--,v--; ub= max(ub,w);
solver.AddEdge(u,v,w);
}
printf("Case #%d: ",kase);
double ans = ub;
if(!test(ub+)){
printf("No cycle found.\n");
}else{
double L =,R= ub;
while(R-L>1e-){
double M = L+(R-L)/;
if(test(M)){
R=M;
}else {
L=M;
}
}
printf("%.2lf\n",L);
} }
return ;
}

uva11090 Bellman-Ford 运用的更多相关文章

  1. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  2. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  3. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  4. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  5. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  6. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  7. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  8. poj1860 兑换货币(bellman ford判断正环)

    传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...

  9. ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))

    这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...

  10. poj3259 bellman——ford Wormholes解绝负权问题

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 35103   Accepted: 12805 Descr ...

随机推荐

  1. python2.0_s12_day9_协程&多线程和cpu,磁盘io之间的关系

    事件驱动和异步io有什么直接关系. 当我们访问一个网页,不考虑网络问题.我们人类不觉得网页慢. 但是实际中对计算机来说还是慢.那慢在哪里.io io操作是整个网络操作中最慢的.比如你打开网页要是有2秒 ...

  2. 什么是LTE?

    LTE是英文Long Term Evolution的缩写.LTE也被通俗的称为3.9G,具有100Mbps的数据下载能力,被视作从3G向4G演进的主流技术.它改进并增强了3G的空中接入技术,采用OFD ...

  3. Python 入门(四)List和Tuple类型

    创建list Python内置的一种数据类型是列表:list.list是一种有序的集合,可以随时添加和删除其中的元素. 比如,列出班里所有同学的名字,就可以用一个list表示: >>> ...

  4. kubectl get 输出格式

    常见的输出格式有: * custom-columns=<spec> # 根据自定义列名进行输出,逗号分隔 * custom-columns-file=<filename> # ...

  5. C# string.Format("{0:C3}", 2)

  6. INSTALL_FAILED_INVALID_APK

    在项目中无意中把APP只写成了 xxx  没有xxx.xxx.xxx  掉坑里了,找了好久,给大家提不醒

  7. 说说FATFS文件系统(转)

    FATFS是一个为小型嵌入式系统设计的通用FAT(File Allocation Table)文件系统模块.FatFs 的编写遵循ANSI C,并且完全与磁盘I/O层分开.因此,它独立(不依赖)于硬件 ...

  8. win7(64)使用vim碰到的奇怪问题

    一直使用conemu做控制台使用vim,操作系统win7 64位,一直用的很好. 今天使用gvim打开文件发现c:\program file(x86)\vim\_vimrc不生效,最奇怪的是,采用控制 ...

  9. 【Spring Boot && Spring Cloud系列】构建Springboot项目 实现restful风格接口

    项目代码如下: package hello; import org.springframework.boot.SpringApplication; import org.springframework ...

  10. EUI组件之TextInput

    输入文本,被废弃的组件,可以用EditableText代替