http://poj.org/problem?id=1273

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

EK算法:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],n,m,v[],pre[];
int bfs(int s,int t)
{
queue<int>q;
q.push(s);
memset(pre,-,sizeof(pre));
memset(v,,sizeof(v));
pre[s]=s;
v[s]=;
while(!q.empty())
{
int w=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(map[w][i]&&!v[i])
{
pre[i]=w;
v[i]=;
if(i==t)
{
return ;
}
q.push(i);
}
}
}
return ;
}
void EK(int s,int t)
{
int ans=,minx;
while(bfs(s,t)==)
{
minx=inf;
for(int i=t; i!=s; i=pre[i])
{
minx=min(minx,map[pre[i]][i]);
}
for(int i=t; i!=s; i=pre[i])
{
map[pre[i]][i]-=minx;
map[i][pre[i]]+=minx;
}
ans+=minx;
}
printf("%d\n",ans);
return ;
}
int main()
{
int xx,yy,zz;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&xx,&yy,&zz);
map[xx][yy]+=zz;
}
EK(,n);
}
return ;
}

dinic算法:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
int map[][],dis[];
int m,n;
int bfs(int s,int t)
{
memset(dis,-,sizeof(dis));
dis[s]=;
queue<int>q;
q.push(s);
while(!q.empty())
{
int y=q.front();
q.pop();
for(int i=; i<=n; i++)
{
if(dis[i]==-&&map[y][i])
{
dis[i]=dis[y]+;
q.push(i);
}
}
}
if(dis[t]>) return ;
return ;
}
int dinic(int s,int maxt)
{
if(s==n) return maxt;
int a,sum=maxt;
for(int i=; i<=n&&sum; i++)
{
if(dis[i]==dis[s]+&&map[s][i]>)
{
a=dinic(i,min(sum,map[s][i]));
map[s][i]-=a;
map[i][s]+=a;
sum-=a;
}
}
return maxt-sum;
}
int main()
{
int x,y,z,ans;
while(scanf("%d%d",&m,&n)!=EOF)
{
ans=;
memset(map,,sizeof(map));
while(m--)
{
scanf("%d%d%d",&x,&y,&z);
map[x][y]+=z;
}
while(bfs(,n)==)
{
ans+=dinic(,inf);
}
printf("%d\n",ans);
}
return ;
}

POJ1273:Drainage Ditches(最大流入门 EK,dinic算法)的更多相关文章

  1. POJ-1273 Drainage Ditches 最大流Dinic

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 65146 Accepted: 25112 De ...

  2. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  3. poj-1273 Drainage Ditches(最大流基础题)

    题目链接: Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67475   Accepted ...

  4. poj1273 Drainage Ditches (最大流板子

    网络流一直没学,来学一波网络流. https://vjudge.net/problem/POJ-1273 题意:给定点数,边数,源点,汇点,每条边容量,求最大流. 解法:EK或dinic. EK:每次 ...

  5. [poj1273]Drainage Ditches(最大流)

    解题关键:最大流裸题 #include<cstdio> #include<cstring> #include<algorithm> #include<cstd ...

  6. poj1273 Drainage Ditches Dinic最大流

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 76000   Accepted: 2953 ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  9. 2018.07.06 POJ1273 Drainage Ditches(最大流)

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Description Every time it rains on Farmer J ...

随机推荐

  1. CSS使用经验总结

    清除图片下方出现几像素的空白间隙 方法1: img{display:block;} 方法2: img{vertical-align:top;} 除了top值,还可以设置为text-top | midd ...

  2. linq select

    var categoryIdArray = MusicCategoryRelationBLL.GetModel(music.Id); music.MusicCategoryIds = string.E ...

  3. Android 6.0启动过程具体解析

    在之前的一篇文章中.从概念上学习了Andoird系统的启动过程.Android系统启动过程学习 而在这篇文章中,我们将从代码角度细致学习Android系统的启动过程,同一时候,学习Android启动过 ...

  4. POJ 1160 Post Office(区间DP)

    Description There is a straight highway with villages alongside the highway. The highway is represen ...

  5. 数据库中存储js代码无法json解析

    .net-------------------Microsoft.JScript.GlobalObject.escape(); 编码 Mircorsoft.JScript.GlobalObject.u ...

  6. React的setState如何实现同步处理数据

    React里面的使用setState来进行状态的更新,为了性能的提升,此时的过程是异步操作的,那我们如果在一个进程里面想同步操作改变了状态的值怎么办呢,这里需要使用回调函数了: this.setSta ...

  7. ubuntu14.04 LTS 搜狗输入法安装和不能输入中文的解决方法

    搜狗输入法安装 1.首先通过Ubuntu软件中心,需要安装:fcitx https://pinyin.sogou.com/linux/help.php 2.然后再安装搜狗输入法包 https://pi ...

  8. JavaBean入门及简单的例子

    不会编写JavaBean就不是一个Java开发人员. 那么,何谓JavaBean呢? JavaBean是符合某种规范的Java组件,也就是Java类. 它必须满足如下规范: 1)必须有一个零参数的默认 ...

  9. CentOS oracle Client客户端安装

    CentOS客户端安装方法如下: 1.安装客户端 rpm -ivh /当前目录/oracle-instantclient12.1-basic-12.1.0.2.0-1.x86_64.rpm rpm - ...

  10. 把 Activity 改成 ListActivity继续使用 setContentView

    ListActivity has a default layout that consists of a single, full-screen list in the center of the s ...