What and where are the stack and heap?
The stack is the memory set aside as scratch space for a thread of execution. When a function is called, a block is reserved on the top of the stack for local variables and some bookkeeping data. When that function returns, the block becomes unused and can be used the next time a function is called. The stack is always reserved in a LIFO (last in first out) order; the most recently reserved block is always the next block to be freed. This makes it really simple to keep track of the stack; freeing a block from the stack is nothing more than adjusting one pointer.
The heap is memory set aside for dynamic allocation. Unlike the stack, there's no enforced pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any time and free it at any time. This makes it much more complex to keep track of which parts of the heap are allocated or free at any given time; there are many custom heap allocators available to tune heap performance for different usage patterns.
Each thread gets a stack, while there's typically only one heap for the application (although it isn't uncommon to have multiple heaps for different types of allocation).
To answer your questions directly:
To what extent are they controlled by the OS or language runtime?
The OS allocates the stack for each system-level thread when the thread is created. Typically the OS is called by the language runtime to allocate the heap for the application.
What is their scope?
The stack is attached to a thread, so when the thread exits the stack is reclaimed. The heap is typically allocated at application startup by the runtime, and is reclaimed when the application (technically process) exits.
What determines the size of each of them?
The size of the stack is set when a thread is created. The size of the heap is set on application startup, but can grow as space is needed (the allocator requests more memory from the operating system).
What makes one faster?
The stack is faster because the access pattern makes it trivial to allocate and deallocate memory from it (a pointer/integer is simply incremented or decremented), while the heap has much more complex bookkeeping involved in an allocation or free. Also, each byte in the stack tends to be reused very frequently which means it tends to be mapped to the processor's cache, making it very fast. Another performance hit for the heap is that the heap, being mostly a global resource, typically has to be multi-threading safe, i.e. each allocation and deallocation needs to be - typically - synchronized with "all" other heap accesses in the program.
A clear demonstration:

What and where are the stack and heap?的更多相关文章
- 【转】JVM运行原理及JVM中的Stack和Heap的实现过程
来自: http://blog.csdn.net//u011067360/article/details/46047521 Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’( ...
- 图解.NET Stack和Heap的本质区别
现在越来越觉得对.NET基本概念的理解和掌握对于提升编程水平的重要性,先从.NET的 Stack(栈)和Heap(堆)说起,计算机的内存可以分为代码块内存,stack内存和heap内存.代码块内存是在 ...
- 堆栈 & Stack and Heap
What's the difference between a stack and a heap? The differences between the stack and the heap can ...
- JVM的stack和heap,JVM内存模型,垃圾回收策略,分代收集,增量收集
(转自:http://my.oschina.net/u/436879/blog/85478) 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认 ...
- JVM运行原理及Stack和Heap的实现过程
Java语言写的源程序通过Java编译器,编译成与平台无关的‘字节码程序’(.class文件,也就是0,1二进制程序),然后在OS之上的Java解释器中解释执行,而JVM是java的核心和基础,在ja ...
- Java虚拟机:JVM中的Stack和Heap
简单的了解一下JVM中的栈和堆 在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和 ...
- 深入Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆),这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
- Mastering stack and heap for system reliability
http://www.iar.com/Global/Resources/Developers_Toolbox/Building_and_debugging/Mastering_stack_and_he ...
- Stack vs Heap
http://gribblelab.org/CBootcamp/7_Memory_Stack_vs_Heap.html Table of Contents Stack vs Heap The Stac ...
- 复习Java虚拟机:JVM中的Stack和Heap
在JVM中,内存分为两个部分,Stack(栈)和Heap(堆).这里,我们从JVM的内存管理原理的角度来认识Stack和Heap,并通过这些原理认清Java中静态方法和静态属性的问题. 一般,JVM的 ...
随机推荐
- Linux下让tomcat显示图片(jdk1.4, tomcat4.0 或更高版本)
1.步骤:修改$CATALINA_HOME/bin/catalina.sh文件($CATALINA_HOME是指tomcat安装目录),在原文件的40行新增如下内容即可CATALINA_OPTS=&q ...
- 实例讲解MSSQL日期相加减比大小函数 转
1. 当前系统日期.时间select getdate() 2. dateadd 在向指定日期加上一段时间的基础上,返回新的 datetime 值例如:向日期加上2天select dateadd(day ...
- 10.8 OSInstall破解
解决 无法完成您的购买,不兼容的问题 http://pan.baidu.com/share/link?shareid=2396730945&uk=1764629622
- Unity 打包完太大
打包完以后,看BuildLog,发现 Level 这一项数据很大,按照官方文档,这应该是很小的一项才对,但是我们的包中Level占据了80+M,20-30%,经过反复试验,发现是 Static Bat ...
- leetcode https://oj.leetcode.com/problems/jump-game-ii/
1.超时的,效率太低 public class Solution { public int jump(int[] A) { int len=A.length; int d[]=new int[len] ...
- codeforces 385C Bear and Prime Numbers 预处理DP
题目链接:http://codeforces.com/problemset/problem/385/C 题目大意:给定n个数与m个询问区间,问每个询问区间中的所有素数在这n个数中被能整除的次数之和 解 ...
- hdoj 2647 Reward【反向拓扑排序】
Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- 一个可视化的retrospective网站
IdeaBoardz - Brainstorm, Retrospect, Collaborate是一个可视化的retrospective,brainstorm的网站,比较简单易用,可以导出pdf和ex ...
- hdu1043Eight (经典的八数码)(康托展开+BFS)
建议先学会用康托展开:http://blog.csdn.net/u010372095/article/details/9904497 Problem Description The 15-puzzle ...
- iOS 8 设置导航栏的背景颜色和背景图片
假设是storyboard 直接embed一个导航栏.然后在新出现的导航栏 选属性 选一下颜色就能够了 代码实现背景颜色改动:self.navigationController.navigationB ...