Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng
【分析】
算是真正明白二维树状数组了。
维护的时候只要更改矩阵的四个端点就行了。呵呵呵..
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <utility>
#include <iomanip>
#include <string>
#include <cmath>
#include <map> const int MAXN = + ;
const int MAX = + ;
using namespace std;
int n, m;//m为操作次数
int C[MAXN][MAXN]; int lowbit(int x){return x&-x;}
/*int sum(int x, int y){
int cnt = 0, tmp;
while (x > 0){
tmp = y;
while (tmp > 0){
cnt += C[x][tmp];
tmp -= lowbit(tmp);
}
x -= lowbit(x);
}
return cnt;
}
void add(int x, int y, int val){
int tmp;
while (x <= 1000){
tmp = y;
while (tmp <= 1000){
C[x][tmp] += val;
tmp += lowbit(tmp);
}
x += lowbit(x);
}
return;
}*/
void add(int x,int y) {
int i,k;
for(i=x; i<=n; i+=lowbit(i))
for(k=y; k<=n; k+=lowbit(k))
C[i][k]++;
}
int sum(int x,int y) {
int i,k,cnt = ;
for(i=x; i>; i-=lowbit(i))
for(k=y; k>; k-=lowbit(k))
cnt += C[i][k];
return cnt;
} void work(){
scanf("%d%d", &n, &m);
for (int i = ; i <= m; i++){
char str[];
scanf("%s", str);
if (str[] == 'Q'){
int x, y;
scanf("%d%d", &x, &y);
//x++;y++;
printf("%d\n", sum(x, y)%);
}else if (str[] == 'C'){
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
x1++;y1++;x2++;y2++;
add(x2, y2);
add(x2, y1 - );
add(x1 - , y2);
add(x1 - , y1 - );
}
}
} int main(){
int T;
#ifdef LOCAL
freopen("data.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &T);
while (T--){
memset(C, , sizeof(C));
work();
printf("\n");
}
return ;
}

【POJ2155】【二维树状数组】Matrix的更多相关文章

  1. poj2155二维树状数组

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  2. POJ2155(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  3. poj2155二维树状数组区间更新

    垃圾poj又交不上题了,也不知道自己写的对不对 /* 给定一个矩阵,初始化为0:两种操作 第一种把一块子矩阵里的值翻转:0->1,1->0 第二种询问某个单元的值 直接累计单元格被覆盖的次 ...

  4. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  5. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  6. POJ2155 Matrix(二维树状数组||区间修改单点查询)

    Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...

  7. [POJ2155]Matrix(二维树状数组)

    题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...

  8. POJ2155/LNSYOJ113 Matrix【二维树状数组+差分】【做题报告】

    这道题是一个二维树状数组,思路十分神奇,其实还是挺水的 题目描述 给定一个N∗NN∗N的矩阵AA,其中矩阵中的元素只有0或者1,其中A[i,j]A[i,j]表示矩阵的第i行和第j列(1≤i,j≤N)( ...

  9. POJ 2155 Matrix (二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17224   Accepted: 6460 Descripti ...

随机推荐

  1. 【转】Xcode 7 真机调试详细步骤

    原文网址:http://www.jianshu.com/p/fa5f90b61ad6 文/ldjhust(简书作者)原文链接:http://www.jianshu.com/p/fa5f90b61ad6 ...

  2. (转载)MySQL关键字GROUP BY的使用

    例子: mysql> select * from employee; +------+------+-------+------+-------+----------+ | num | d_id ...

  3. Win32消息机制

    1. 消息机制     过程驱动:程序是按照我们预先定义好的顺序执行,每执行一步,下一步都已经按照预定的顺序继续执行,直到程序结束.       事件驱动:程序的执行顺序是无序的.某个时间点所执行的代 ...

  4. Oracle LOB

    Oracle LOB Oracle .NET Framework 数据提供程序包括 OracleLob 类,该类用于使用 Oracle LOB 数据类型. OracleLob 可能是下列 Oracle ...

  5. 支付返回post请求数据

    点击返回商家返回的post数据: {"requestBody":"singnType=&version=&businessId=00WGFKB20012& ...

  6. ndk编译时的通用Android.mk文件

    LOCAL_PATH := $(call my-dir) include $(CLEAR_VARS) LOCAL_MODULE := live555 MY_SRC_PATH := $(LOCAL_PA ...

  7. Nginx+Tomcat的服务器端环境配置详解

    这篇文章主要介绍了Nginx+Tomcat的服务器端环境配置详解,包括Nginx与Tomcat的监控开启方法,需要的朋友可以参考下 Nginx+tomcat是目前主流的Javaweb架构,如何让ngi ...

  8. firefox如何restart重启

    1.开发者工具栏可以对firefox进行重启,不是关闭firefox又打开那种重启

  9. matlab初学者_脚本文件调用函数文件

    问题: matlab里面有两种文件,一种是脚本文件,一种是函数文件,为了模块化程序,我们需要把专门的功能写成一个函数封装到某个函数文件里面. 那么来看如何在脚本文件里调用函数文件中的函数. 注意点: ...

  10. java工具类--数据库操作封装类

    java对数据库操作简单处理,如下代码即可,封装了 增删改查及获取连接.关闭连接. 代码如下: package com.test; import java.sql.Connection; import ...