Triangle
Time Limit: 3000MS   Memory Limit: 30000K
Total Submissions: 8917   Accepted: 2650

Description

Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

Input

The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

Output

For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

Sample Input

3
3 4
2 6
2 7
5
2 6
3 9
2 0
8 0
6 5
-1

Sample Output

0.50
27.00

Source

【思路】

  凸包+旋转卡壳

  旋转卡壳:先确定两个点,叉积寻找最大的第三点,然后改变第二个点继续。

  Quote:求点集中的最大三角形面积,O(n) 的旋转卡壳,先凸包,然后选取开头三个点 p,q,r 开始旋转,注意 r 不超过第一个点,q 不超过 r,p 不超过 q 。每次做三次推进,先推进 r,使 pq 不动面积最大,然后推进 q,再推进 p,如果三次都没有推进过,r 推进一格。每次推进完一个点都更新一下面积最大值。

【代码】

 #include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; struct Pt {
int x,y;
Pt(int x=,int y=):x(x),y(y) {};
};
typedef Pt vec; vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); }
bool operator < (const Pt& a,const Pt& b) {
return a.x<b.x || (a.x==b.x && a.y<b.y);
}
bool operator == (const Pt& a,const Pt& b) {
return a.x==b.x && a.y==b.y;
}
int cross(vec A,vec B) { return A.x*B.y-A.y*B.x; }
int dist(Pt A,Pt B) {
return (A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y);
}
vector<Pt> ConvexHull(vector<Pt> p) {
sort(p.begin(),p.end());
p.erase(unique(p.begin(),p.end()),p.end());
int n=p.size() , m=;
vector<Pt> ch(n+);
for(int i=;i<n;i++) {
while(m> && cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
int k=m;
for(int i=n-;i>=;i--) {
while(m>k && cross(ch[m-]-ch[m-],p[i]-ch[m-])<=) m--;
ch[m++]=p[i];
}
if(n>) m--;
ch.resize(m); return ch;
} int n;
vector<Pt> p,ch; int RC() {
int n=ch.size();
int ans= , cur= , j,k;
Pt v;
FOR(i,,n-) {
j=(i+)%n , k=(j+)%n;
while(j!=i && k!=i) {
ans=max(ans,abs(cross(ch[j]-ch[i],ch[k]-ch[i])));
while(cross(ch[i]-ch[j],ch[(k+)%n]-ch[k])<) k=(k+)%n;
j=(j+)%n;
}
}
return ans;
} int main() {
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
while(scanf("%d",&n)== && n!=-) {
p.clear() , ch.clear();
int x,y;
FOR(i,,n) {
scanf("%d%d",&x,&y);
p.push_back(Pt(x,y));
}
ch=ConvexHull(p);
printf("%.2lf\n",RC()/2.0);
}
return ;
}

poj 2079 Triangle(旋转卡壳)的更多相关文章

  1. POJ 2079 Triangle [旋转卡壳]

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9525   Accepted: 2845 Descript ...

  2. POJ 2079 Triangle 旋转卡壳求最大三角形

    求点集中面积最大的三角形...显然这个三角形在凸包上... 但是旋转卡壳一般都是一个点卡另一个点...这种要求三角形的情况就要枚举底边的两个点 卡另一个点了... 随着底边点的递增, 最大点显然是在以 ...

  3. POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 7625   Accepted: 2234 Descript ...

  4. poj 2079 Triangle (二维凸包旋转卡壳)

    Triangle Time Limit: 3000MS   Memory Limit: 30000KB   64bit IO Format: %I64d & %I64u Submit Stat ...

  5. poj 2079 Triangle,旋转卡壳求点集的最大三角形

    给出一个点集,求顶点在点集中的最大的三角形面积. 我们知道这三角形的三个点肯定在凸包上,我们求出凸包之后不能枚举,由于题目n比較大,枚举的话要O(n^3)的数量级,所以採用旋转卡壳的做法: 首先枚举三 ...

  6. ●POJ 2079 Triangle

    题链: http://poj.org/problem?id=2079 题解: 计算几何,凸包,旋转卡壳 复杂度O(N^2),(O(N)什么的就不说了,我觉得我看过的O(N)方法正确性都有问题,虽然有些 ...

  7. POJ 2187 凸包+旋转卡壳

    思路: 求个凸包 旋转卡壳一下 就求出来最远点对了 注意共线情况 也就是说   凸包如果有一堆点共线保留端点即可 //By SiriusRen #include <cmath> #incl ...

  8. POJ 2079 Triangle (凸包+旋转卡壳)

    [题目链接] http://poj.org/problem?id=2079 [题目大意] 给出一些点,求出能组成的最大面积的三角形 [题解] 最大三角形一定位于凸包上,因此我们先求凸包,再在凸包上计算 ...

  9. poj 2079 Triangle

    Triangle Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 9835   Accepted: 2951 Descript ...

随机推荐

  1. ZeroBrane Lua脚本编辑器代码自动补全

    简介         ZeroBrane Studio是一款支持代码提示.语法高亮.远程调试.代码分析.调试等功能的轻量级Lua IDE工具.可以去官网studio.zerobrane.com进行下载 ...

  2. IOS 学习笔记 2015-04-15 控制器数据反向传值

    // // FirstViewController.h // 控制器数据传递 // // Created by wangtouwang on 15/4/15. // Copyright (c) 201 ...

  3. CentOS7修改网卡为eth0

    CentOS7修改网卡为eth0 1.编辑网卡信息 [root@linux-node2~]# cd /etc/sysconfig/network-scripts/  #进入网卡目录 [root@lin ...

  4. 【Android】Sqlite3命令详解

    Sqlite3常用命令 Sqlite3命令有"."符合作为前缀. 基本操作 1.创建或者打开数据库 sqlite3 xxx.db 如果xxx.db存在则打开如果没有则新建此时执行创 ...

  5. js判断是否全是相同的字符串

    isSameStr("aa2a") //不都是相同的字符 function isSameStr(str){ var tem=0; for(var i=0;i<str.leng ...

  6. c语言位运算符

    C语言既具有高级语言的特点,又具有低级语言的功能. 所谓位运算是指进行二进制位的运算. C语言提供的位运算: 运算符   含义  &   按位与  |   按位或  ∧   按位异或  ∽   ...

  7. MYSQL数据库备份与恢复

    mysqldump -h主机名  -P端口 -u用户名 -p密码 (–database) 数据库名 > 文件名.sql 备份MySQL数据库的命令 mysqldump -hhostname -u ...

  8. Kafka Offset Storage

    1.概述 目前,Kafka 官网最新版[0.10.1.1],已默认将消费的 offset 迁入到了 Kafka 一个名为 __consumer_offsets 的Topic中.其实,早在 0.8.2. ...

  9. nump中的为随机数产生器的seed

    在python的程序中,发现了如下的伪随机数产生的代码 rng = numpy.random.RandomState(23355) arrayA = rng.uniform(0,1,(2,3)) 该段 ...

  10. Uva 1050 Ars Longa

    Description You have been struck with inspiration, and are designing a beautiful new art sculpture f ...