bzoj2487: Super Poker II
Description
I have a set of super poker cards, consisting of an infinite number of cards. For each positive composite integer p, there
are exactly four cards whose value is p: Spade(S), Heart(H), Club(C) and
Diamond(D). There are no cards of other values.
By “composite integer”, we
mean integers that have more than 2 divisors. For example, 6 is a composite
integer, since it
has 4 divisors: 1, 2, 3, 6; 7 is not a composite number,
since 7 only has 2 divisors: 1 and 7. Note that 1 is not composite
(it has
only 1 divisor).
Given a positive integer n, how many ways can you pick
up exactly one card from each suit (i.e. exactly one spade card,
one heart
card, one club card and one diamond card), so that the card values sum to n? For
example, if n=24, one way is
4S+6H+4C+10D, shown below:

Unfortunately, some of the cards are lost,
but this makes the problem more interesting. To further make the problem even
more interesting (and challenging!), I’ll give you two other positive
integers a and b, and you need to find out all the
answers for n=a, n=a+1,
…, n=b.
Input
The input contains at most 25 test cases.
Each test case begins with 3 integers a, b and c, where c is the number of lost
cards. The next line contains c strings, representing the lost cards. Each
card is formatted as valueS, valueH, valueC or
valueD, where value is a
composite integer. No two lost cards are the same. The input is terminated by
a=b=c=0. There
will be at most one test case where a=1, b=50,000 and
c<=10,000. For other test cases, 1<=a<=b<=100,
0<=c<=10.
Output
For each test case, print b-a+1 integers, one
in each line. Since the numbers might be large, you should output each
integer modulo 1,000,000. Print a blank line after each test
case.
Sample Input
4S 6H
0 0 0
Sample Output
0
0
0
0
0
1
0
3
HINT
很简单的fft,看懂题面即可。
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 131075
#define pi 3.14159265358979323846
#define mod 1000000
using namespace std;
typedef long long int64;
char ch;
int l,r,m,n,x,len,tot,re[maxn],prime[maxn];
bool ok,bo[maxn];
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int rev(int v){
int t=;
for (int i=;i<len;i++) t<<=,t|=v&,v>>=;
return t;
}
struct comp{
double rea,ima;
void clear(){rea=ima=;}
comp operator +(const comp &x){return (comp){rea+x.rea,ima+x.ima};}
comp operator -(const comp &x){return (comp){rea-x.rea,ima-x.ima};}
comp operator *(const comp &x){return (comp){rea*x.rea-ima*x.ima,rea*x.ima+ima*x.rea};}
}a[maxn],b[maxn],c[maxn],d[maxn],Wn[][maxn],wn,w,t1,t2;
void fft(comp *a,int op){
for (int i=,t=re[i];i<n;i++,t=re[i]) if (i<t) swap(a[i],a[t]);
for (int s=;s<=n;s<<=){
wn=Wn[op][s];//cout<<wn.rea<<' '<<wn.ima<<endl;
for (int i=;i<n;i+=s){
w=(comp){,};
for (int j=i;j<i+(s>>);j++,w=w*wn){
t1=a[j],t2=w*a[j+(s>>)];
a[j]=t1+t2,a[j+(s>>)]=t1-t2;
}
}
}
if (op) for (int i=;i<n;i++) a[i].rea/=n,a[i].ima/=n;
}
void work(){
for (int i=;i<=r;i++) a[i].rea=(int64)round(a[i].rea)%mod,a[i].ima=;
for (int i=r+;i<n;i++) a[i].clear();
}
void init(){
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(*pi/i),sin(*pi/i)};
for (int i=;i<maxn;i<<=) Wn[][i]=(comp){cos(-*pi/i),sin(-*pi/i)};
for (int i=;i<=;i++){
if (!bo[i]) prime[++tot]=i;
for (int j=;j<=tot&&i*prime[j]<=;j++){
bo[i*prime[j]]=;
if (!(i%prime[j])) break;
}
}
}
int main(){
for (init(),read(l),read(r),read(m);l&&r;read(l),read(r),read(m)){
for (len=,n=;n<((r+)<<);len++,n<<=);
for (int i=;i<n;i++) re[i]=rev(i);
for (int i=;i<n;i++) a[i].clear(),b[i].clear(),c[i].clear(),d[i].clear();
for (int i=;i<r;i++) a[i].rea=b[i].rea=c[i].rea=d[i].rea=bo[i];
for (int i=;i<=m;i++){
read(x);
if (ch=='S') a[x].rea=;
else if (ch=='H') b[x].rea=;
else if (ch=='C') c[x].rea=;
else if (ch=='D') d[x].rea=;
}
fft(a,),fft(b,),fft(c,),fft(d,);
for (int i=;i<n;i++) a[i]=a[i]*b[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*c[i];
fft(a,),work(),fft(a,);
for (int i=;i<n;i++) a[i]=a[i]*d[i];
fft(a,),work();
for (int i=l;i<=r;i++) printf("%d\n",(int)a[i].rea);
puts("");
}
return ;
}
bzoj2487: Super Poker II的更多相关文章
- UVA - 12298 Super Poker II NTT
UVA - 12298 Super Poker II NTT 链接 Vjudge 思路 暴力开个桶,然后统计,不过会T,用ntt或者fft,ntt用个大模数就行了,百度搜索"NTT大模数&q ...
- UVa12298 Super Poker II(母函数 + FFT)
题目 Source http://acm.hust.edu.cn/vjudge/problem/23590 Description I have a set of super poker cards, ...
- Super Poker II UVA - 12298 FFT_生成函数
Code: #include<bits/stdc++.h> #define maxn 1000000 #define ll long long #define double long do ...
- FFT(快速傅里叶变换):UVAoj 12298 - Super Poker II
题目:就是现在有一堆扑克里面的牌有无数张, 每种合数的牌有4中不同花色各一张(0, 1都不是合数), 没有质数或者大小是0或者1的牌现在这堆牌中缺失了其中的 c 张牌, 告诉你a, b, c接下来c张 ...
- UVA12298 Super Poker II
怎么又是没人写题解的UVA好题,个人感觉应该是生成函数的大板子题了. 直接做肯定爆炸,考虑来一发优化,我们记一个多项式,其中\(i\)次项的系数就表示对于\(i\)这个数有多少种表示方式. 那么很明显 ...
- UVA - 12298 Super Poker II (FFT+母函数)
题意:有四种花色的牌,每种花色的牌中只能使用数值的约数个数大于2的牌.现在遗失了c张牌.每种花色选一张,求值在区间[a,b]的每个数值的选择方法有多少. 分析:约数个数大于2,即合数.所以先预处理出5 ...
- UVA 12298 Super Poker II (FFT)
#include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using ...
- 浅谈FFT(快速傅里叶变换)
本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
随机推荐
- json格式键盘编码对照表
整理了一份JSON格式的键盘编码对照表.欢迎转载,但请注明出处,谢谢! { VK_BACK: 8, //退格键 VK_TAB: 9, //TAB键 VK_RETURN: 13, //回车键 VK_SH ...
- AGG 之贝塞尔插值
原文: http://liyiwen.iteye.com/blog/705489 之前 comp.graphic.algorithms 上有一个讨论,是关于怎么样使用曲线对多边形进行插值处理,使得最终 ...
- Searching the String - ZOJ 3228(ac自动机)
题目大意:首先给你一下母串,长度不超过10^5,然后有 N(10^5) 次查询,每次查询有两种命令,0或者1,然后加一个子串,询问母串里面有多少个子串,0表示可以重复,1表示不可以重复. 分析:发 ...
- N - Is It A Tree?(判断环)
题意,就是判断这点点是不是组成的一颗树,也就是判断是否有环,就是没看出来如果是森林怎么办,试一试吧,最可恶的还没有说有多少节点.....就是个坑 /////////////////////////// ...
- RabbitMQ-清空队列中(一个channel或连接中)的Unacknowledged状态的消息
清空所有:nack 时将参数delivery-tag设为0,multiple设为1. 清空小于等于某delivery-tag的所有消息:nack 时将参数delivery-tag设为正数(介于1和92 ...
- android编程中setLayoutParams方法设置
第一篇 private LinearLayout generateHeadOfControl() { LinearLayout LayoutHead = createLayout(LinearLayo ...
- JAVA中的继承和覆盖
java里面的继承是子类继承父类的一些方法和属性(除private属性和方法之外):对于父类的私有属性和方法子类是没有继承的.可是要想子类也能訪问到父类的私有属性,必须给私有属性以外界訪问的方法接口. ...
- [转] Linux下查看文件和文件夹大小
当磁盘大小超过标准时会有报警提示,这时如果掌握df和du命令是非常明智的选择. df可以查看一级文件夹大小.使用比例.档案系统及其挂入点,但对文件却无能为力. du可以查看文件及文件夹的大小. ...
- EventLoop的设计
1. Event Loop作为一个IO线程,通过IO复用来处理事件 2. 为了保证线程安全,任何需要修改IO线程资源的工作都交给IO线程亲自来做 3. 为了IO线程与其他线程互调,需要设计一个even ...
- C++初始化顺序
1. 全局和类的静态变量成员在main之前构造和初始化,静态成员不能在类的内部构造初始化 2. 类的普通成员依据在类内的定义顺序初始化,类的构造函数的初始化类表只能决定成员的构造函数,不能决定构造顺序 ...