莫名其妙就AC了……

圆的反演……

神马是反演?

快去恶补奥数……

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double pi=acos(-1.0);
const double eps=1e-9;
int dcmp(double x){return fabs(x)<eps?0:x<0?-1:1;}
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator +(dot a){return dot(x+a.x,y+a.y);}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
dot operator *(double a){return dot(x*a,y*a);}
double operator *(dot a){return x*a.y-y*a.x;}
dot operator /(double a){return dot(x/a,y/a);}
double operator /(dot a){return x*a.x+y*a.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
void in(){scanf("%lf%lf",&x,&y);}
void out(){printf("%f %f\n",x,y);}
dot norv(){return dot(-y,x);}
dot univ(){double a=mod();return dot(x/a,y/a);}
dot ro(double a){return dot(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a));}
double mod(){return sqrt(x*x+y*y);}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
struct cir
{
dot o;
double r;
cir(){}
cir(dot a,double b){o=a;r=b;}
void in(){o.in();scanf("%lf",&r);}
};
struct seg
{
dot s,e;
seg(){}
seg(dot a,dot b){s=a;e=b;}
};
cir sivs(dot a,dot b,dot c)
{
dot dir,a1,b1;
double t,d,w;
t=fabs((b-a)*(c-a));
d=a.dis(b);
t/=d;
w=0.5/t;
dir=(b-a).norv();
a1=c+dir*(w/d);
b1=c-dir*(w/d);
if(fabs((b-a)*(a1-a))<fabs((b-a)*(b1-a)))
return cir(a1,w);
else
return cir(b1,w);
}
cir civs(cir a,dot b)
{
cir c;
double t,x,y,s;
t=a.o.dis(b);
x=1.0/(t-a.r);
y=1.0/(t+a.r);
c.r=(x-y)/2.0;
s=(x+y)/2.0;
c.o=b+(a.o-b)*(s/t);
return c;
}
seg se[2];
void comseg(dot a,double r1,dot b,double r2)
{
double ang;
ang=acos((r1-r2)/a.dis(b));
se[0].s=a+(b-a).ro(ang).univ()*r1;
se[1].s=a+(b-a).ro(-ang).univ()*r1;
ang=pi-ang;
se[0].e=b+(a-b).ro(-ang).univ()*r2;
se[1].e=b+(a-b).ro(ang).univ()*r2;
}
int main()
{
int T,cnt,i;
cir a,b,a1,b1,ans[2];
dot c;
scanf("%d",&T);
while(T--)
{
a.in();
b.in();
c.in();
a1=civs(a,c);
b1=civs(b,c);
comseg(a1.o,a1.r,b1.o,b1.r);
cnt=0;
for(i=0;i<2;i++)
if(dcmp((a1.o-se[i].s)*(se[i].e-se[i].s))==dcmp((c-se[i].s)*(se[i].e-se[i].s)))
if(dcmp((b1.o-se[i].s)*(se[i].e-se[i].s))==dcmp((c-se[i].s)*(se[i].e-se[i].s)))
ans[cnt++]=sivs(se[i].s,se[i].e,c);
printf("%d\n",cnt);
for(i=0;i<cnt;i++)
printf("%.8f %.8f %.8f\n",ans[i].o.x,ans[i].o.y,ans[i].r);
}
}

Problem of Apollonius

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 551    Accepted Submission(s): 124

Special Judge

Problem Description
  Apollonius of Perga (ca. 262 BC - ca. 190 BC) was a Greek geometer and astronomer. In his noted work Epaphai, he posed and solved such a problem: constructing circles that are tangent to three given circles in a plane. Two tangent
circles can be internally or externally tangent to each other, thus Apollonius's problem generically have eight solutions.


  Now considering a simplified case of Apollonius's problem: constructing circles that are externally tangent to two given circles, and touches a given point(the given point must be on the circle which you find, can't be inside the circle). In addition, two
given circles have no common points, and neither of them are contained by the other, and the given point is also located strictly outside the given circles. You should be thankful that modern mathematics provides you with plenty of useful tools other than
euclidean geometry that help you a lot in this problem.
 
Input
  The first line of input contains an integer T (T ≤ 200), indicating the number of cases.

  Each ease has eight positive integers x1, y1, r1, x2, y2, r2, x3, y3 in a single line, stating two circles whose centres are (x1, y1), (x2, y2) and radius are r1 and r2 respectively, and a point located at (x3, y3). All integers are no larger than one hundred.
 
Output
  For each case, firstly output an integer S, indicating the number of solutions.

  Then output S lines, each line contains three float numbers x, y and r, meaning that a circle, whose center is (x, y) and radius is r, is a solution to this case. If there are multiple solutions (S > 1), outputing them in&nbsp;any order is OK. Your answer
will be accepted if your absolute error for each number is no more than 10-4.

 
Sample Input
1
12 10 1 8 10 1 10 10
 
Sample Output
2
10.00000000 8.50000000 1.50000000
10.00000000 11.50000000 1.50000000
Hint
This problem is special judged.
 
Source
 

hdu 4773 Problem of Apollonius的更多相关文章

  1. 【HDU】4773 Problem of Apollonius

    题意 给定相离的两个圆(圆心坐标以及半径)以及圆外的一个定点\(P\),求出过点\(P\)的且与已知的两个圆外切的所有圆(输出总数+圆心.半径). 分析 如果强行解方程,反正我是不会. 本题用到新姿势 ...

  2. 【 HDU4773 】Problem of Apollonius (圆的反演)

    BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...

  3. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  4. hdu String Problem(最小表示法入门题)

    hdu 3374 String Problem 最小表示法 view code#include <iostream> #include <cstdio> #include &l ...

  5. HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. HDU 5687 Problem C 【字典树删除】

    传..传送:http://acm.hdu.edu.cn/showproblem.php?pid=5687 Problem C Time Limit: 2000/1000 MS (Java/Others ...

  7. HDU 6342.Problem K. Expression in Memories-模拟-巴科斯范式填充 (2018 Multi-University Training Contest 4 1011)

    6342.Problem K. Expression in Memories 这个题就是把?变成其他的使得多项式成立并且没有前导零 官方题解: 没意思,好想咸鱼,直接贴一篇别人的博客,写的很好,比我的 ...

  8. HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)

    6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...

  9. HDU 5687 Problem C(Trie+坑)

    Problem C Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Tota ...

随机推荐

  1. C语言学习总结(二) 运算流程

    第三章.基本运算 (运算符.算数运算符.关系运算符.逻辑运算符.三目运算符.ASXLL码) 一.什么是运算符? 概念:是编译程序执行特定的算术或逻辑操作的符号: 分类:算术运算符. 关系运算符.逻辑运 ...

  2. 运行avalon.define()发生的事情

      avalon.define = function(id, factory) { var $id = id.$id || id if (!$id) { log("warning: vm必须 ...

  3. 转:如何制作一个定制的 PHP 基础 Docker 镜像(一)

    原文来自于:http://open.daocloud.io/ru-he-zhi-zuo-yi-ge-ding-zhi-de-php-ji-chu-docker-jing-xiang/ 目标:准备一个定 ...

  4. 【原创】Matlab中plot函数全功能解析

    [原创]Matlab中plot函数全功能解析 该帖由Matlab技术论(http://www.matlabsky.com)坛原创,更多精彩内容参见http://www.matlabsky.com 功能 ...

  5. AJAX里调用AJAX,作定时进度刷新

    这个确实搞了一段时间,但成就感有啦... 哈哈,这个自动部署平吧,异步队列CELERY+REDIS,发布进度实时AJAX的技术点全部打通!!! 而获取实时进度,我用的是RESTFUL FRAMEWOR ...

  6. saxReader的列子

    import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.xml.sax.Attributes; import org.x ...

  7. BZOJ2464: 中山市选[2009]小明的游戏

    2464: 中山市选[2009]小明的游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 280  Solved: 124[Submit][Statu ...

  8. 从零开始学习ASP.NET MVC 1.0

    转自:http://www.cnblogs.com/zhangziqiu/archive/2009/02/27/ASPNET-MVC-1.html <从零开始学习ASP.NET MVC 1.0& ...

  9. 进军es6(1)---初识es6

    es6,全称ECMAScript6(又名es2015).何为ECMAScript?我们常说的Javascript和它又有什么联系呢? 阮一峰老师有一句话描述的比较准确:“ECMAScript是Java ...

  10. PHP 获取时间的各种处理方式!

    今天写下php中,如何通过各种方法 获取当前系统时间.时间戳,并备注各种格式的含义,可灵活变通.1.获取当前时间方法date()很简单,这就是获取时间的方法,格式为:date($format, $ti ...